VALUE ENGINEERING STUDY OF

FEGENBUSH LANE AND BEULAH CHURCH ROAD INTERSECTION

ITEM NUMBER: 5-73.00/fd041550 C056

Jefferson County, Kentucky February 12-16, 2007

Prepared by:

VE GROUP, L.L.C.

In Association With:

KENTUCKY TRANSPORTATION CABINET

VALUE ENGINEERING STUDY TEAM LEADER

Gerald D. Love, P.E., C.V.S., PhD C.V.S. Registration No. 840603 (LIFE)

DATE

TABLE OF CONTENTS

ITEM NO.	DES	CRIPTION	PAGE NO
I.	EXE	CUTIVE SUMMARY	1
II.	LOC	CATION OF PROJECT	3
III.	TEA	M MEMBERS AND PROJECT DESCRIPTION	4
IV.	INV	ESTIGATION PHASE	5
v.	SPE	CULATION PHASE	8
VI.	EVA	LUATION PHASE	9
	A.	ALTERNATIVES	9
	В.	ADVANTAGES AND DISADVANTAGES	10
VII.	DEV	ELOPMENT PHASE	16
	A.	FEGENBUSH LANE/S.WATTERSON TRACE/ OUTER LOOP INTERSECTION (1) AS PROPOSED (2) VALUE ENGINEERING ALTERNATIVE	17 17 24
	В.	FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION (1) AS PROPOSED (2) VALUE ENGINEERING ALTERNATIVE	34 34 40
	C.	PAVEMENT DESIGN (1) AS PROPOSED (2) VALUE ENGINEERING ALTERNATIVE	51 51 52
	D.	DRAINAGE SYSTEM (1) AS PROPOSED (2) VALUE ENGINEERING ALTERNATIVE	55 55 56
	Е.	DESIGN COMMENTS (1) MAINTENANCE OF TRAFFIC	62 62
VIII.	SUM	IMARY OF RECOMMENDATIONS	66
IX.	APP	ENDICES	68

I. EXECUTIVE SUMMARY

INTRODUCTION

This Value Engineering report summarizes the results of the Value Engineering Study performed by VE Group for the Kentucky Transportation Cabinet. The study was performed during the week of February 12-16, 2007.

The subject of the study is improvements to the Outer Loop at the intersection of Fegenbush Lane and Beulah Church Road in Jefferson County in metropolitan Louisville.

PROJECT DESCRIPTION

The project provides improvements to the following two at-grade intersections:

- · Outer Loop, Fegenbush Lane, and S Watterson Trace
- Fegenbush Lane and Beulah Church Road

The project, with an overall length of 0.93 miles, includes pavement widening and resurfacing to provide additional travel and turning lanes as well as storm water drainage improvements. Additional right-of-way acquisition is required to accommodate the pavement widening.

METHODOLOGY

The Value Engineering Team followed the basic Value Engineering procedure for conducting this type of analysis.

This process included the following phases:

- 1. Investigation
- 2. Speculation
- 3. Evaluation
- 4. Development
- 5. Presentation
- 6. Report Preparation

Evaluation criteria identified as a basis for the comparison of alternatives included the following:

- Traffic Control
- Construction Time
- Service Life
- Maintenance of Traffic
- Construction Cost
- Utility Impacts
- R/W Requirements

I. EXECUTIVE SUMMARY

RESULTS – AREAS OF FOCUS

The following areas of focus were analyzed by the Value Engineering team and from these areas the following Value Engineering alternatives were developed and are recommended for Implementation:

Recommendation Number1: Fegenbush Lane/S. Watterson Trace/Outer Loop Intersection

The Value Engineering Team recommends that Value Engineering Alternative be implemented. This alternative provides a free flowing Roundabout in lieu of a signalized intersection.

If this recommendation can be implemented, there is a possible savings of \$1,327,418.

Recommendation Number 2: Fegenbush Lane/Beulah Church Road Intersection

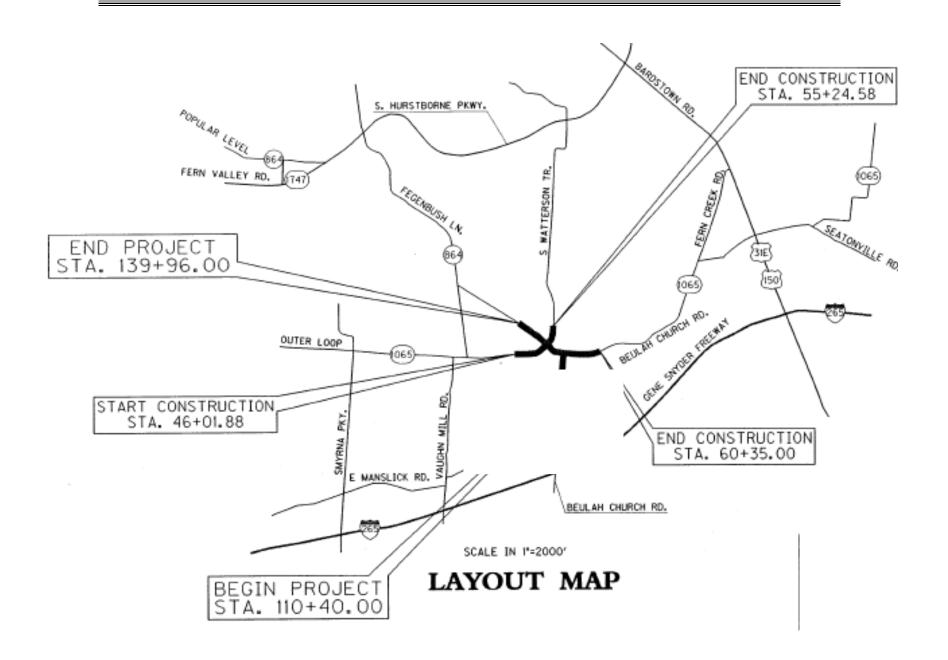
The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative provides a free flowing Roundabout in lieu of a signalized intersection.

If this recommendation can be implemented, there is a possible savings of \$1,645,603.

Recommendation Number 3: Pavement Design

The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative minimizes the thickness of the aggregate base and maximizes the depth of the asphalt concrete to obtain the required pavement structural support for the design year traffic.

If this recommendation can be implemented, there is a possible savings of \$131,968.


Recommendation Number 4: Drainage System

The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative has open channel swales with 8 ft. paved shoulders as the typical section instead of curbs and gutters with a closed drainage system. High-density polyethylene pipes are proposed as an acceptable alternate for all storm drains.

If this recommendation can be implemented, there is a possible savings of \$179,556.

	As Proposed		Value Engineerin	g Alternatives
Construction	Right-of-Way	Total	# Recommendations	Possible Savings
\$ 3,500,000.00	\$ 4,600,000.00	\$ 8,100,000.00	4	\$ 3,284,545.00

II. LOCATION OF PROJECT

III. TEAM MEMBERS AND PROJECT DESCRIPTION

TEAM MEMBERS

NAME	AFFILIATION	EXPERTISE	PHONE
Jerry Love, P.E., C.V.S., PhD	VE Group	Team Leader	850/627-3900
Tom Hartley, P.E., C.V.S.	VE Group	Traffic	850/627-3900
Bill Keating, P.E.	VE Group	Construction	850/627-3900
Joel Pate	VE Group	Roadway	850/627-3900
Mike Bezold, P.E.	KYTC – Dist. 6	Roadway	859-341-2700
Joe Tucker	KYTC-Headquarters	Pavement Design	502-564-3280

PROJECT DESCRIPTION

The project includes pavement widening and improvements at the following two signalized intersections:

- Beulah Church Road (KY 864) and Fegenbush Lane (KY 864)
- · Outer Loop (KY 1063), Fegenbush Lane (KY864), and S. Watterson Trace

The project has an overall length of 0.93 miles with an estimated construction cost of \$3.6 million and R/W acquisition costs of \$4.6 million. The project, located in Jefferson County, within the Louisville Metropolitan Area, has a designated design speed of 35 mph and a design year ADT of 18,900.

IV. INVESTIGATION PHASE

VALUE ENGINEERING STUDY BRIEFING

FERGENBUSH LANE AND BEULAH CHURCH ROAD INTERSECTION February 12-16, 2007

NAME	AFFILIATION	PHONE
Jerry Love	VE Group	850-627-3900
Thomas Hartley	VE Group	850-627-3900
Bill Keating	VE Group	850-627-3900
Joel Pate	VE Group	850-627-3900
Mike Bezold	KYTC-Dist. 6	859-341-2700
Kelly Meyer	Quest Engineers	502-584-4118
Kert Ballard	Quest Engineers	502-584-4118
John Callihan	KYTC-Dist. 5	502-367-6411
Tala Quino	KYTC-Dist. 5	502-367-6411
Joe Tucker	KYTC- Design	502-564-3280
Mary Murray	FHWA	502-223-6745
Robert Semones	KYTC-Headquarters	502-564-9900

STUDY RESOURCES

FERGENBUSH LANE AND BEULAH CHURCH ROAD INTERSECTION February 12-16, 2007

NAME	AFFILIATION	PHONE
Brent A. Sweger	KYTC – Planning	564-9900-3297

IV. INVESTIGATION PHASE

FUNCTIONAL ANALYSIS WORKSHEET

FERGENBUSH LANE AND BEULAH CHURCH ROAD INTERSECTION February 12-16, 2007

ITEM	FUNCT. VERB	FUNCT. NOUN	* TYPE	COST (000)	WORTH	VALUE INDEX
Fegenbush Lane /Outerloop Intersection	Accom.	Traffic	В	\$1,000	\$300	3.33
Fegenbush Lane /Beulah Church Intersection	Accom.	Traffic	В	\$2,000	\$500	4.00
Pavement Design	Support	Traffic	В	\$1,700	\$1,500	1.13
Drainage System	Convey	Water	В	\$660	\$500	1.32
Maintenance of Traffic	Maintain	Traffic	В	\$250	\$225	1.11

*B – Basic S - Secondary

^{**} Note: This worksheet is a tool of the Value Engineering process and is only used for determining the areas that the Value Engineering team should focus on for possible alternatives. The column for COST indicates the approximate amount of the cost as shown in the cost estimate. The column for WORTH is an estimated cost for the lowest possible alternative that would provide the FUNCTION shown. Many times the lowest cost alternatives are not considered implementable but are used only to establish a worth for a function. A value index greater than 1.00 indicates the Value Engineering team intends to focus on this area of the project.

IV. INVESTIGATION PHASE

The following areas have a value index greater than 1.00 on the proceeding Functional Analysis Worksheet and therefore have been identified by the Value Engineering Team as areas of focus and investigation for the Value Engineering process:

- A. FEGENBUSH LANE/ SOUTH WATTERSON TRACE/ OUTER LOOP INTERSECTION
- B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION
- C. PAVEMENT DESIGN
- D. DRAINAGE SYSTEM
- E. MAINTENANCE OF TRAFFIC

V. SPECULATION PHASE

Ideas generated, utilizing the brainstorming method, for performing the functions of previously identified areas of focus.

A. FEGENBUSH LANE/SOUTH WATTERSON TRACE/ OUTER LOOP INTERSECTION

- Roundabout
- Urban Interchange
- Cul-de-sac S. Watterson Trace
- Add additional turning lanes

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

- Roundabout
- Urban Interchange
- Add additional turning lanes

C. PAVEMENT DESIGN

- Portland Cement Concrete Pavement
- Minimum Aggregate Base with Maximum Asphalt Concrete
- Alternate Types of Asphalt Concrete

D. DRAINAGE SYSTEM

- Open Channel Swales in Certain Areas and Reduce Curb and Gutter
- Permit use of High Density Polyethylene Storm Drain Pipes
- Provide 8 ft. shoulders in lieu of curbs and gutters

E. MAINTENANCE OF TRAFFIC

- Utilize Detours and Temporary Pavement to Reduce Traffic in Construction Areas
- Temporarily Close Lower Volume Intersection Approaches

A. ALTERNATIVES

The following alternatives were formulated during the "eliminate and combine" portion of the Evaluation Phase.

A. FEGENBUSH LANE/SOUTH WATTERSON TRACE/OUTER LOOP INTERSECTION

Value Engineering Alternative: Roundabout.

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

Value Engineering Alternative: Roundabout.

C. PAVEMENT DESIGN

Value Engineering Alternative Number 1: Portland Cement Concrete

Pavement.

Value Engineering Alternative Number 2: Minimum Aggregate Base with

Maximum Asphalt Concrete.

D. DRAINAGE SYSTEM

Value Engineering Alternative: Open Channel Swale with 8 ft.

Shoulders as Typical Section, Reduce Curb and Gutter, and

Designate High Density

Polyethylene Pipe as an Acceptable

Alternate for Storm Drains.

E. MAINTENANCE OF TRAFFIC

Value Engineering Alternative: Utilize Detours and Temporary

Pavement to Reduce Traffic in

Construction Areas.

B. ADVANTAGES AND DISADVANTAGES

The following Advantages and Disadvantages were developed for the Value Engineering Alternatives previously generated during the speculation phase. It also includes the Advantages and Disadvantages for the "As Proposed".

A. FEGENBUSH LANE/SOUTH WATTERSON TRACE/ OUTER LOOP INTERSECTION

"As Proposed": At-grade Signalized Intersection.

Advantages

- Acceptable to public.
- Smaller footprint.

<u>Disadvantages</u>

- High construction cost.
- High maintenance cost.
- Increase in traffic conflicts.
- Increases traffic delays.

Conclusion

Carry forward for further evaluation.

Value Engineering Alternative: Roundabout.

Advantages

- Reduces traffic delays.
- Requires less pavement area.
- Requires less R/W.
- Lower maintenance costs.
- Enhances aesthetics.
- Flexibility to convert to future higher capacity signalized intersection.

Disadvantages

- Public not as familiar with roundabout operation.
- May be more difficult to maintain traffic during construction.

Conclusion

Carry forward for further evaluation.

B. ADVANTAGES AND DISADVANTAGES (continued)

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

"As Proposed": At-grade signalized intersection.

Advantages

Acceptable to public.

Disadvantages

- High construction cost.
- · High maintenance cost.
- · Larger footprint.
- Increase in traffic conflicts.
- Increases traffic delays.
- Reduces property access.

Conclusion

Carry forward for further evaluation.

Value Engineering Alternative: Roundabout.

Advantages

- Reduces traffic delays.
- Requires less pavement area.
- Lower maintenance cost.
- Enhances aesthetics.
- Flexibility to convert to future higher capacity signalized intersection.

<u>Disadvantages</u>

- May be more difficult to maintain traffic during construction.
- Has larger footprint.
- Public not as familiar with roundabout operation.

Conclusion

Carry forward for further evaluation.

B. ADVANTAGES AND DISADVANTAGES (continued)

C. PAVEMENT DESIGN

"As Proposed": Asphalt Concrete with Maximum Aggregate Design.

Advantages

- Simplifies MOT.
- Matches existing approach pavements.
- More adaptable to future pavement overlays.

Disadvantages

Higher maintenance cost.

Conclusion

Carry forward for further evaluation.

Value Engineering Alternative Number 1: Portland Cement Concrete Pavement.

Advantages

- Lower maintenance cost.
- Reduces potential for rutting with stop and go intersection traffic.
- Requires less excavation.

Disadvantages

- Doesn't match existing approach pavements.
- Higher construction cost.
- More difficult to maintain traffic during construction.

Conclusion

Drop from further evaluation because of higher construction cost and more difficult MOT.

B. ADVANTAGES AND DISADVANTAGES (continued)

C. PAVEMENT DESIGN (continued)

Value Engineering Alternative Number 2: Minimum Aggregate with Maximum Asphalt Concrete.

Advantages

- Requires less pavement material.
- · Simplifies MOT.
- Less excavation required.
- Matches existing pavements.
- Reduces lane drop off during construction.
- Higher salvage value.
- Lower construction cost.

<u>Disadvantages</u>

None apparent.

Conclusion

Carry forward for further evaluation.

B. ADVANTAGES AND DISADVANTAGES (continued)

D. DRAINAGE SYSTEM

<u>"As Proposed":</u> Curb and Gutter With Closed Drainage System.

Advantages

- Minimizes R/W.
- Aesthetically pleasing.
- Controls access to abutting property.

Disadvantages

- Higher construction cost.
- Eliminates safety areas for disabled vehicles.

Conclusion

Carry forward for further evaluation.

Value Engineering Alternative:

Open Channel Swales With 8 ft. shoulders as Typical Section, Reduce Curb and Gutter, and Designate High Density Polyethylene Pipe as an Acceptable Alternate for Storm Drains.

Advantages

- Lower construction cost.
- Provides areas for disabled vehicles.
- Matches swales on approach roadways.
- Provides additional pavement width for MOT.

Disadvantages

- May require additional grading.
- Eliminates sidewalks.

Conclusion

Carry forward for further evaluation.

B. ADVANTAGES AND DISADVANTAGES (continued)

E. MAINTENANCE OF TRAFFIC

"As Proposed": Maintain one lane of traffic in each direction at all times.

Advantages

Provides access to abutting property during construction.

<u>Disadvantages</u>

- Higher construction cost.
- Longer construction time.

Conclusion

Carry forward for further evaluation.

Value Engineering Alternative: Utilize Detours and Temporary Pavement To Reduce Traffic in Construction Areas.

Advantages

- Reduces construction phases.
- May reduce construction time.
- May reduces construction cost.

<u>Disadvantages</u>

- Temporary increase in traffic on local streets.
- May impede access to abutting businesses.

Conclusion

Drop from further evaluation since this alternative is not more cost effective than the as proposed MOT. Comments regarding the proposed MOT plan are included as a design comment.

A. FEGENBUSH LANE/SOUTH WATTERSON TRACE/ OUTER LOOP INTERSECTION

- (1) AS PROPOSED
- (2) VALUE ENGINEERING ALTERNATIVE

B. FEGENBUSH LANE/BEULAH CHURCH LANE INTERSECTION

- (1) AS PROPOSED
- (2) VALUE ENGINEERING ALTERNATIVE

C. PAVEMENT DESIGN

- (1) AS PROPOSED
- (2) VALUE ENGINEERING ALTERNATIVE

D. DRAINAGE SYSTEM

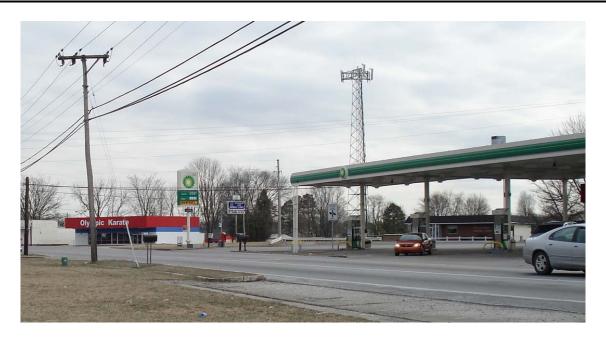
- (1) AS PROPOSED
- (2) VALUE ENGINEERING ALTERNATIVE

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

1. "As Proposed"

This intersection and approaches include improvements that are a part of the Congestion Mitigation Project designed to improve the operational characteristics of the roadway system within the project limits.

The following photographs depict the conditions at the existing intersection and the intersection approaches that are 2-lane typical rural sections with open drainage swales.


EXISTING INTERSECTION – FEGENBUSH LANE/OUTER LOOP/SOUTH WATTERSON TRACE

SOUTH WATTERSON TRACE APPROACH

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

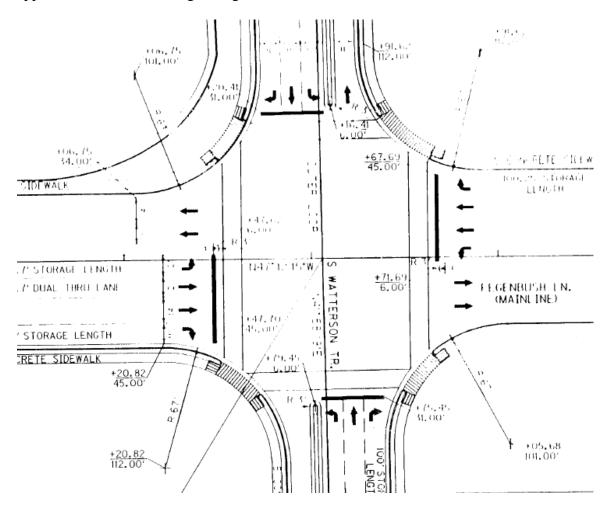
1. "As Proposed" (continued)

FEGENBUSH LANE SOUTH APPROACH

FEGENBUSH LANE NORTH APPROACH

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

1. "As Proposed" (continued)


OUTER LOOP APPROACH

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

1. "As Proposed" (continued)

PROPOSED IMPROVEMENTS

The as proposed design increases the capacity of the existing signalized intersection of Fegenbush Lane, Outer Loop and S. Watterson Trace by widening the intersection and approaches to the following configuration:

AS PROPOSED INTERSECTION

- 1. NB & SB Fegenbush Lane approaches:
 - a. 2 -Through lanes
 - b. 1 Left Turn lane
 - c. 1 Right Turn lane

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

1. "As Proposed" (continued)

- 2. Outer Loop approach:
 - a. 1 -Through lane
 - b. 1 Left Turn lane
 - c. 1 Right Turn lane
- 3. S. Watterson Trace approach:
 - a. 1 Through lane
 - b. 1 Left Turn lane
 - c. 1 Right Turn lane

TRAFFIC ANALYSIS

The Value Engineering Team completed a Highway Capacity Analysis of the widened intersection utilizing the Planning Model and the provided AM & PM Design Year traffic volumes. The traffic analysis indicated that the as proposed design would provide a V/C Ratio of 0.90 (Near Capacity) for the AM Peak and a V/C Ratio of 0.75 (Under Capacity) for the PM Peak. The as proposed intersection should therefore provide adequate capacity for the projected 2028 design year traffic volumes. Traffic analysis data sheets are included on following pages.

R/W REQUIREMENTS

These improvements, as designed, will require the acquisition of nearly 74,500 SF of fee simple right of way from 12 different parcels. The fee simple acquisition is estimated to cost approximately \$1,400,000.

CONSTRUCTION COST

The estimated construction cost of the as proposed intersection improvements that include widening the intersection and approaches, installing curb and gutter, sidewalks, and a closed drainage system is approximately \$1,273,000.

DESIGN BUILD CONCEPT

Although the Value Engineering Team did not make a detailed evaluation of utilizing the design-build concept, it was concluded that this project would be a viable candidate for this type of contract since the design parameters and project limits are well defined. In addition, the project has progressed to the final design stage with adequate data available to prepare the scope of work for this type of Contract. The obvious advantages of the design-build concept are that the design would become a factor in the competitive selection process and some savings in time would be realized.

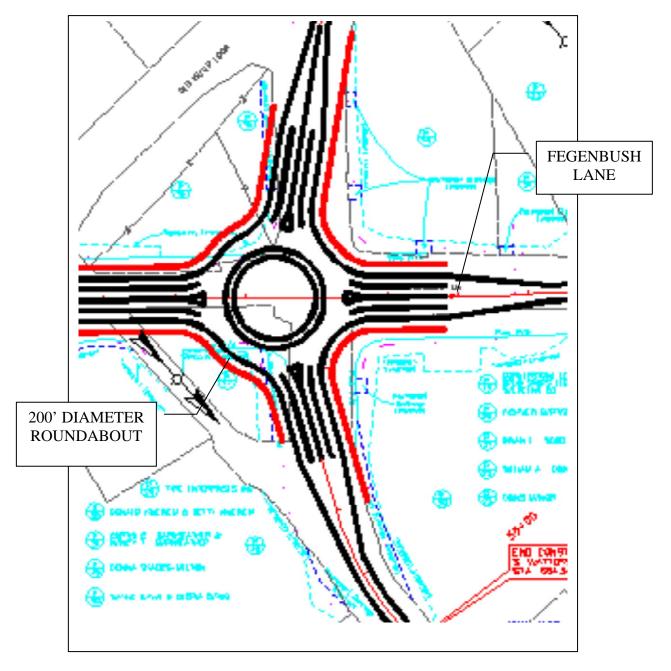
It is appropriate to note that the Department now has a good design consultant under contract who is very familiar with the project. If a decision is made to adopt some or all of the Value Engineering Team recommendations, the existing design can be cost effectively revised within a short period of time.

Phase Plan Selection from Lane Volume Worksheet	Lane Volume	Worksheet	EAST	MEST	NORTH	SOUTH
Critical through-RT vol: [19] LT lane vol: [5] Left turn protection: (P/U/N) Dominant left turn: (Indicate	[19] U/N) cate by '<')		25 0 0 0 0 0 0	155 0 0	740 0 U	450 U
Selection Criteria based on the apecified left turn protection	d on the tection			5 A :	956	□ △ :
< Indicates the dominant for each opposing pair	t left turm	Plan Plan Plan	2 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	o di di z	L A A Z	z 4 A c
Phase plan selected (1 to	4)				П	
Min. cycle (Cmin) 60	Max	. cycle (Cmax)	ax) 120			
Timing Plan	Value	EAST-WEST Ph 1 Eh 2	EST Ph 3	Ph 1	NORIH-SOUTH	HE THE
Novement codes Critical phase vol [CV] Critical sum [CS]	ර හැර හැ හි	259 0	0	740	0	0
ceb adjustment [ceb] Reference sum [RS] Lost time/phase [PL] Lost time/cycle [TL]	1539	0	0	44	0	0
Cycle length (CYC) Phase time	0.09	17.5 0.0	0.0	46 C4	0.0	0.0

VII. Development Phase
A. Fegenbush Lane/S. Watterson Trace/Outer Loop Intersection
1. "As Proposed"

	SIGNAL OPE	RATIONS	OPERATIONS WORKSHEET			
Phase Plan Selection from Lane Volume Workshest	Lane Volume	Workshe	EAST bound	WEST DOUND	NORTH	SOUTH
Critical through-RT vol: [19] LT lane vol: [5] Left turn protection: (P/U/N) Dominant left turn: (Indicate	[19] U/N) cate by '<')		0000	480 0 U	0 n	420 0 U
Selection Criteria based on the specified left turn protection	d on the tection	Flan Flan	C1 C	Dai	ppi	> a :
< Indicates the dominant for each opposing pair	t left turn	Flan Plan Plan	4: 52 52 54 54 54 54 54 54 54 54 54 54 54 54 54		rôox	×
Phase plan selected (1 to	Q.				П	
Min. cycle (Cmin) 60	Mark	. cycle (Cmax)	Cmaw) 120			
Timing Plan	Value	EAST Ph 1	EAST-WEST 2h 2 Ph	3 Ph 1	NORTH-SOUTH	TH Eh 3
Movement codes Critical phase vol [CV] Critical sum [CS]	1193	S.M.T 55.0 0	0	N 88 64 57 77	a	o
CDD adjustment [CDD] Reference sum [RS] Lost time/phase [FL] Lost time/cycle [TL]	1539	97	0	47	0	0
Cycle length [CYC] Phase time Critical v/c Ratio [Xcm]	0.90	an,	0.0 0.0	32.1	0.0	0.0

VII. Development Phase
A. Fegenbush Lane/S. Watterson Trace/Outer Loop Intersection
1. "As Proposed"


A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

2. Value Engineering Alternative

After reviewing the project in the field, the Value Engineering Team concluded that a possible viable alternative design is a Roundabout in lieu of a signalized intersection. A Roundabout configured as shown in the layout on the following page, was developed for further evaluation as the Value Engineering Alternative.

One of the obvious advantages of a Roundabout as compared to a signalized intersection is that it provides for the free flow of traffic, thereby reducing traffic delays. Although Roundabouts are not a viable design for higher speed arterials, it does operate very efficiently at an operational speed commensurate with the 35 mph designated design speed for this project.

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

VALUE ENGINEERING ALTERNATIVE ROUNDABOUT FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

2. Value Engineering Alternative (continued)

TRAFFIC ANALYSIS

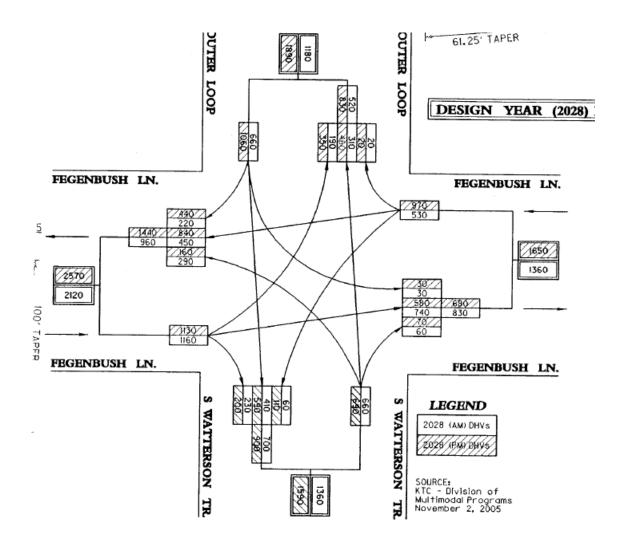
Based on an initial traffic analysis completed by the Value Engineering Team, a two-lane Roundabout has the capacity to accommodate traffic volumes in excess of the design year projections.

A more in-depth analysis was completed with the Rodel Software for a 165' Roundabout. The analysis indicated that this Roundabout would operate at an LOS of A utilizing the projected design year traffic volumes. The analysis also projected that the maximum queue length that would develop would be five vehicles for one of the approaches. The layout shown above with a diameter of 200 ft. could therefore probably be safely reduced to the diameter utilized in the Rodel analysis, assuming that the relatively low percent of trucks does not support the need for a larger diameter Roundabout. Printouts of the results of the Rodel Roundabout Traffic analysis are shown in the data sheets on following pages. Additional traffic capacity analysis data sheets are included in the Appendices.

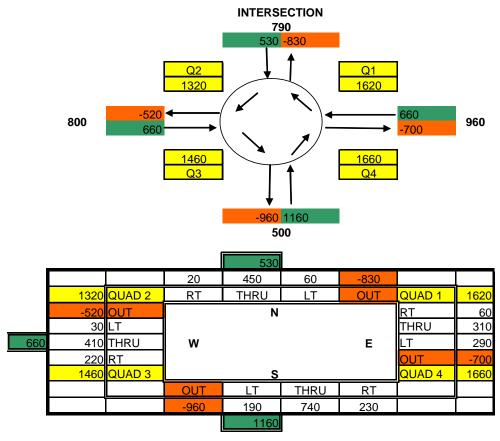
In addition to providing adequate capacity for the design year traffic projections, it is also appropriate to point out that the Roundabout provides a free flowing intersection for all traffic movements. With an operational speed compatible with the project design speed of 35 mph, the Roundabout should operate in a very efficient manner.

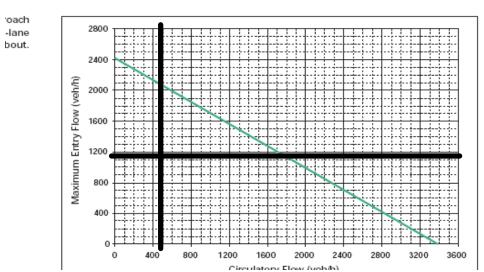
R/W REQUIREMENTS

The major cost savings associated with the Value Engineering Roundabout is the reduction in right of way required to construct the Roundabout as compared to the signalized intersection. The required right of way for the Value Engineering Alternative Roundabout is approximately 28,400 SF from 3 parcels at an estimated cost of approximately \$532,000 whereas the as proposed signalized intersection will require approximately 74,500 SF at an estimated acquisition cost of approximately \$1,396,000.

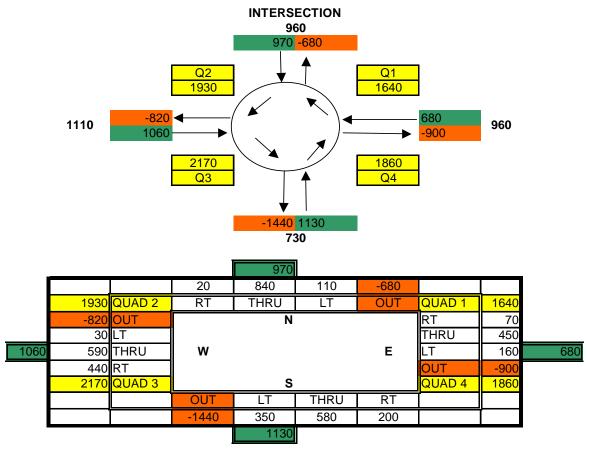

CONSTRUCTION COST

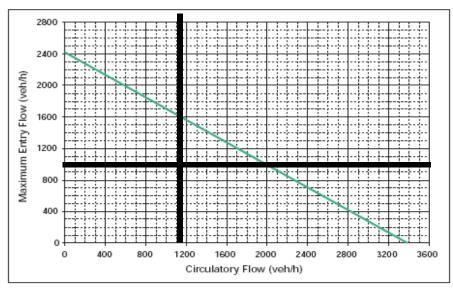
Construction cost savings can be realized with the Roundabout as a result of an overall reduction in pavement, drainage, and signalization costs. The estimated construction cost of the Value Engineering Alternative is approximately \$809,000 as compared to approximately \$1,272,000 for the as proposed design.


RECOMMENDATION


The Value Engineering Team recommends that the Value Engineering Alternative Roundabout be selected as a basis for the development of the final plans since it will function as a free flowing intersection with a desirable LOS and will provide a possible total project cost savings of \$1,327,420.

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION


A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION



AM PEAK

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

PM PEAK

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

*		****	****	***							* *	****						* *
																		*
	13:	2:07					FE	ARSHIO S	a/oursa	LOOP							7.0	
*																		
*				***			*****		******	****	**	***	****				****	**
		(m)	8	.50	8.	.50	8.50	8.5	0		+	TIME	PERIO	000	mán.		9.0	*
	L *	Con/3	4.0	.00	30.	. 0:0	40.00	30.0	10			TIME	SELECT		min		15	
	W	(m)	3	.30	6.	.60	3.30	6.6	0.0		+	RESULT	urs e	RETOR	min.	1.5	7.5	
	EAD	(m)	2.0	.00	2:0	.00	20.00	20.0	0		+	TIME	COST		\$/hr	1.5	.00	+
	PHI	(d)	3.0	.00	3.0	.00	30.00	30.0	10		*	FLOW	PERT	000	min.	15	75	
	DIA	Cond	55	.00	22	.00	55.00	55.0)-D		+	FLOW	TIPE	Decre	i/web	1	VEH	
	CIRAD	SEP		- 0		0	0		0			FLOW	PEAK				AM	
						-			-		+				office Sterre			+
		****		***														
	1.1003	NAMIL	+ pou	+01	LOWE	Out	exit.	Smd e	ta0)	* 71.07	en c	T. e	PLOW :	ROLL TO THE	y 181	PT-ON	TTM	(C)
			*	*		E. Maria	100000000000000000000000000000000000000		CONTRACTOR OF THE SECTION OF THE SEC	*			a aronn	rame a laco			4.4.5	+
	SOUTH	DOM:	0+104	6.4	2.6	450	60	-0		*1 - 66	e de la	anne i	75 1	198 6	1.756	15 45	9 79	
			*1.0		220	410	100 100	0					75 1.		。 (, 空高电)			
			3+1 . Gr	_	23.0	740		6					75 1		75*0			
			# 1 Of		60	310		6					75 1.					
	***************************************	TO THE REAL PROPERTY.	4		100.00	4.4.0	20,000	167		- 3 - 60	- 100 	- 100	1 D 1 1 1	Listo (AL KOP.	LO 460	3 /3	-
				-						-		-						-
										_	Ξ.							-
-											Ξ.							
-																		
	FLOW			ein		930	660	120	00 66	-								
- 1	CAPA		30			5.5-U 4.6-S	1780	168		_								
_														· ANT	EL s		5.3	
- 10		DELA:				.06	0.05	0.3		-				. T	0 8		A.	
		DELA:			Φ.	. 09	0.07	0.2		-					URS		4.5	
		QUEUE				1	1		3	1				. 608	7T \$		67.7	*
	PERM	QUEUI	3 V	ets		1	1		4	1				•				
-																		*
		***	****	***	****							****						* *

A. FEGENBUSH LANE/S. WATTERSON TRACE/OUTER LOOP INTERSECTION

```
13:2:07
                     FEGENBUSH/OUTERLOOP
(m)
         8.50
              8.50
                   8.50 8.50
                                    * TIME PERIOD
                                                     9.0
                                               9000.00
     (m)
        40.00 30.00 40.00 30.00
                                  * RESULTS PERIOD min 15 75
* TIME COST $/hr 15.00
* FLOW PERIOD min 15 75
                                               min 15

    TIME SLICE

     (m)
         3.30 6.60 3.30 6.60

    RAD (m)

       20.00 20.00 20.00 20.00

    PHI (d)

       30.00 30.00 30.00 30.00
* DIA (m) 55.00 55.00 55.00 55.00
                                   * FLOW TYPE pou/veh VEH
* GRAD SEP
         0
              . .
                   9 9
                                    * FLOW PHAK am/op/pm
* LBG NAME *PCU *FLOWS (1st exit 2nd etc...U)*FLOF*CL* FLOW BATIO *FLOW TIME*
 . .
                               + + +
*SOUTHBOUND*1.05*
             20 840 110 0
                               *1.00*50*0.75 1.125 0.75*15 45 75 *
*EASTBOUND *1.05* 440 590 30 0
                               *1.00*50*0.75 1.125 0.75*15 45 75 *
*NORTHBOUND*1.05* 200 580 350 0
                               *1.00*50*0.75 1.125 0.75*15 45 75
*WESTBOUND *1.03*
             70 450 160 0
                                *1.00*50*0.75 1.125 0.75*15 45 75
                                    _{\pm}
970 1060 1130 680
         weeks
* CAPACITY veh 1379 1555 1531 1664
                                            * AWDEL a
                                                      8.5 *
             0.17 0.14 0.17 0.06
· AVE DELAY mins
                                            * L O S
                                                      34 m
* MAX DELAY mine
               0.28 0.23 0.29 0.09
                                            * VEH HRS
                                                      9.0 *
* AVE QUEUE | veh 3 2 3 1

    COST $

* MAX QUHUH __veh
                4
```

FEGENBUSH LANE/SOUTH WATERSON TRACE/OUTER LOOP INTERSECTION VALUE ENGINEERING ALTERNATIVE COST COMPARISON SHEET

DESCRIPTION	UNITS	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
SIGNAL SYSTEM	LS	\$100,000.00	1.0	\$100,000	0.0	\$0
DRAINAGE SYSTEM	LS	\$335,000.00	1.0	\$335,000	0.8	\$268,000
PAVEMENT	SY	\$62.21	9,700.0	\$603,437	6,300.0	\$391,923
SUBTOTAL				\$1,038,437		\$659,923
RIGHT OF WAY	SF	\$18.75	74,457	\$1,396,069	28,391	\$532,331
MOBILIZATION (THIS IS SUB+CONTIN. X % =)		5.0%		\$57,114		\$36,296
TRAFFIC CONTROL/MOT		7.0%		\$72,691		\$46,195
CONTINGENCY		10.0%		\$103,844		\$65,992
GRAND TOTAL				\$2,668,155		\$1,340,737

POSSIBLE SAVINGS:

\$1,327,418

A. FEGENBUSH LANE/S.WATTERSON TRACE/OUTER LOOP INTERSECTION

ARCEL# SF		AC	AP	VE 3 LEG	AP	VE 4 LEG
1	_	-	-	0 0	-	
2	6,438.00	0.15			6,438.00	
3	2,827.00	0.06			2,827.00	
4	2,893.00	0.07			2,893.00	
5	10,394.00	0.24			10,394.00	
6	27,559.00	0.63	27,559.00	610		
7	3,132.00	0.07	,		3,132.00	
8	4,710.00	0.11	4,710.00		.,	
9	5,360.00	0.12	5,360.00			
10	4,961.00	0.11	4,961.00			
11	24,536.00	0.56	24,536.00	24,536		
12	29,381.00	0.67	29,381.00	29,381		
13	9,625.00	0.22	9,625.00	2,810		
14	4,237.00	0.10	4,237.00	310		
15	6,765.00	0.16	,		6,765.00	2878
16	4,366.00	0.10			4,366.00	9300
17	12,927.00	0.30			12,927.00	16203
18	_	-			-	
19	138.00	0.00			138.00	
20	21,482.00	0.49			21,482.00	
21	, -	-			-	
22	1,045.00	0.02			1,045.00	
23	2,050.00	0.05			2,050.00	
24	-	-	-		-	
25	-	-	-		-	
26	-	-	-		-	
27	-	-	-		-	
28	-	-	-			
29	-	-	-			
30	-	-	-			
31	-	-	-			
32	-	-	-			
33	1,545.00	0.04	1,545.00			
34	2,260.00	0.05	2,260.00			
35	3,631.00	0.08	3,631.00			
36	2,820.00	0.06	2,820.00			
37	1,936.00	0.04	1,936.00			
38	2,658.00	0.06	2,658.00			
39	-	-	-		-	
	199,676.00	4.58	125,219.00	57,647.00	74,457.00	28,381.00
TAI						
\$	18.75					
\$	3,743,925		\$ 2,347,856	\$1,080,881	\$1,396,069	\$ 532,144

PAVEMENT UNIT COST = \$1,218,708/19,590 SY = \$58.15/SY

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

1. "As Proposed"

This intersection is a part of the Congestion Mitigation Project designed to improve the operational characteristics of the roadway system within the project limits. The existing conditions are depicted in the following photographs:

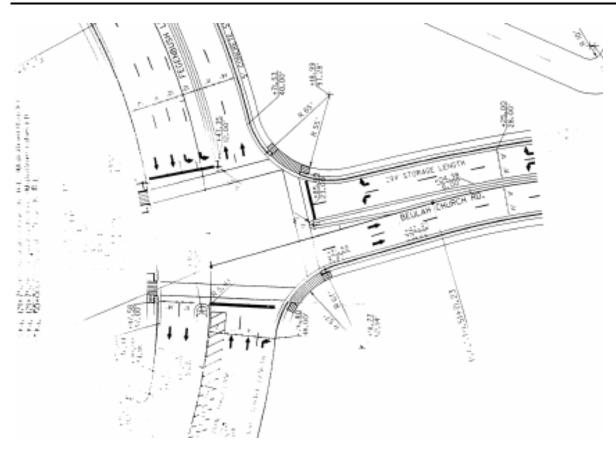
EXISTING 3-LEGGED INTERSECTION LOOKING WEST

The three approach roadways are 2-lane rural typical sections from the east and west and a 3 – lane (two way left turn lane) from the south.

FEGENBUSH LANE WEST APPROACH

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

1. "As Proposed" (continued)


BEULAH CHURCH ROAD EAST APPROACH

AS PROPOSED INTERSECTION DESIGN

The as proposed design increases the capacity of the signalized intersection at the Fegenbush Lane/Beulah Church Road by expanding the intersection and approaches to the following configuration:

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

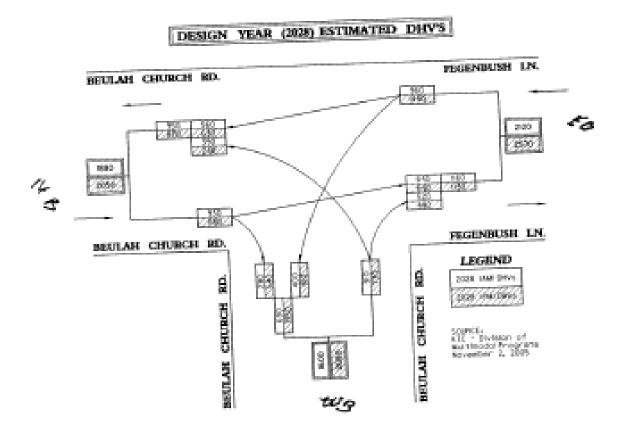
1. "As Proposed" (continued)

- 4. Fegenbush Lane approaches:
 - a. 2 Through lanes
 - b. 2 Left Turn lane
- 5. NB Beulah Church Road approach:
 - a. 2 -Through lane
 - b. 1 Right Turn lane
- 6. WB Beulah Church Road approach:
 - a. 1 Left Turn lane
 - b. 1 Right Turn lane

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

1. "As Proposed" (continued)

TRAFFIC ANALYSIS


The Value Engineering Team completed a Highway Capacity Software Analysis of the intersection using the Planning Model with the AM & PM design year traffic volumes provided. As shown in the capacity analysis results on following pages, the improved intersection, with AM design hour volumes will operate with a V/C Ratio of 0.95 (At Capacity) and with a V/C Ratio of 1.19 (Over Capacity) for the PM Peak. This means that the as proposed design will fail with 2028-design year PM traffic volumes.

R/W REQUIREMENTS

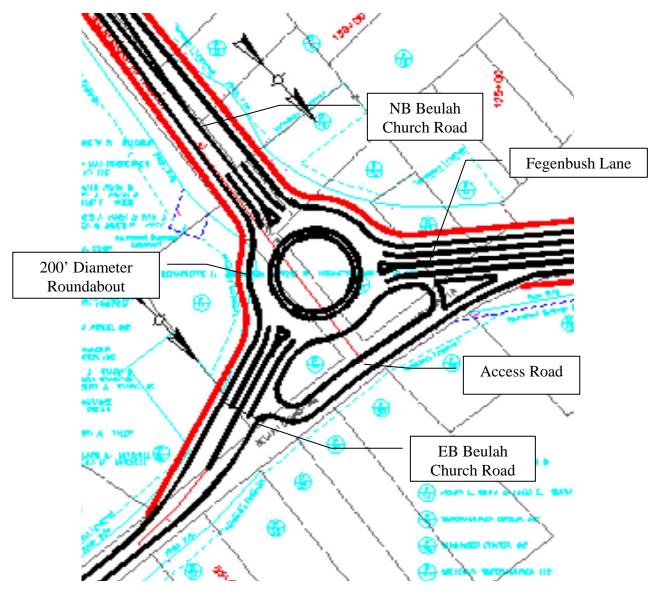
The as proposed improvements, as designed, will require the acquisition of nearly 125,200 SF of fee simple right of way from 14 different parcels. The fee simple acquisitions will cost approximately \$2,350,000.

CONSTRUCTION COST

The estimated construction cost of the as proposed intersection improvements that includes widening the intersection and approaches, installing curb and gutter, sidewalks, and a closed drainage system is approximately \$1,251,000.

SIG	SIGNAL OPERATIONS WORKSHEET	ATIONS	WORKSHE	EL			
Phase Plan Selection from Lane Volume Worksheet	Volume	Workshe		EAST	WEST	NORTH	SOUTH
Critical through-RT vol: [19] LT lane vol: [5] Left turn protection: (P/U/N) Dominant left turn: (Indicate by '<')	by '<')				612 459 N	341 0 U	280 217 P
Selection Criteria based on the specified left turn protection	the	PI	Plan 1: Plan 2a: Plan 2b:	DDA		200	n d
< Indicates the dominant left turn for each opposing pair	t turn	PIL			, DARZ		N G N
Phase plan selected (1 to 4)					1	2a	
Min. cycle (Cmin) 60	Max.	Max. cycle (Cmax) 120	(Cmax)	120			
Timing Plan Value	ne.	Ph 1	EAST-WEST Ph 2	Ph 3	NO)	NORTH-SOUTH 1 Ph 2	H Ph 3
Movement codes Critical phase vol [CV] Critical sum [CS] 1170	2.5	EWT 612	0	0	STL 217	NST 341	0
CBD adjustment [CBD] 1.0 Reference sum [RS] 153 Lost time/phase [PL] Lost time/cycle [TL] 12	2 5	4		0	4	φ	0
Cycle length [CYC] 60.0 Phase time Critical v/c Ratio [Xcm] 0.95		29.1	0.0	0.0	12.9	18.0	0.0
	At capacity						

VII. Development Phase
B. Fegenbush Lane/Beulah Church Road Intersection
1. "As Proposed"

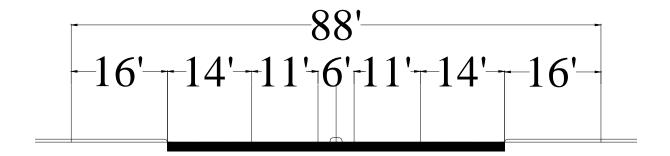

65	SIGNAL OFERATIONS WORKSHEET	ATIONS	MORKSHI	TEL			
Phase Plan Selection from Lane Volume Worksheet	ne Volume	Workshe		EAST	WEST	NORTH	SOUTH
Critical through-RT vol: [19] LT lane vol: [5] Left turn protection: (P/U/N) Dominant left turn: (Indicate]) e by '<')				576 282 N	635 0 U	315 440 P
Selection Criteria based on the specified left turn protection	n the tion	P1	Plan 1: Plan 2a: Plan 2b:		Dab		Dan
< Indicates the dominant left turn for each opposing pair	eft turn	1111			o o o z		N P P
Phase plan selected (1 to 4)					_	2a	_
Min. cycle (Cmin) 60	Max.	Max. cycle (Cmax) 120	(Cmax)	120			
Timing Plan	Value	Ph 1	EAST-WEST Ph 2	Ph 3	Ph 1	NORTH-SOUTH	H Ph 3
vol [CV] CS] [CBD]	1651	EWT 576		0	STL 440	NST 635	0
ime/phase [PL]	539	-44	0	0	44	Ψ	0
length [CYC] time al v/c Ratio [Xcm]		۲.	0.0	0.0	32.8	45.5	0.0
Status	Over capacity	ty					

VII. Development Phase
B. Fegenbush Lane/Beulah Church Road Intersection
1. "As Proposed"

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

2. Value Engineering Alternative

The Value Engineering Team recommends replacing the signalized intersection with a Roundabout configured as shown in the following layout. Access is maintained to the parcels north of the Roundabout via an access road as shown.

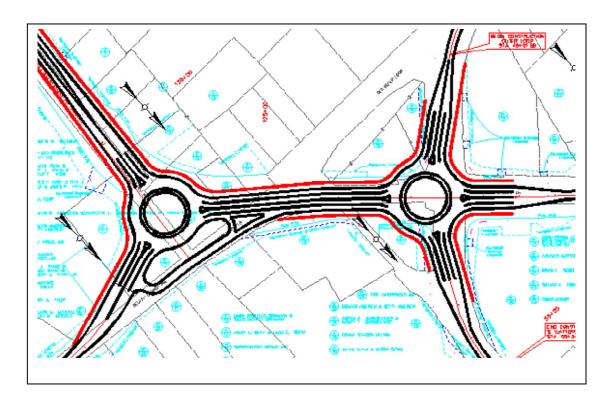

VALUE ENGINEERING ALTERNATIVE ROUNDABOUT LAYOUT AT FEGENBUSH LANE/BEULAH CHURCH RD. INT'N

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

2. Value Engineering Alternative (continued)

The above could be reduced to a smaller diameter depending on the need to accommodate the truck traffic estimated to be 6.5% of the total traffic.

Fegenbush Lane between the Roundabouts would remain a 4-lane roadway with a barrier curb in the median as shown below:

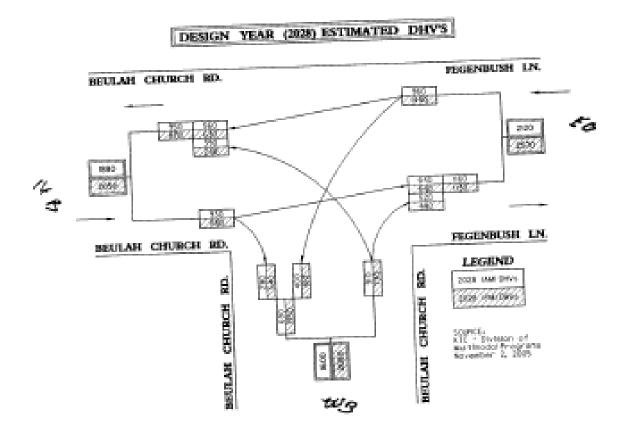


FEGENBUSH LANE TYPICAL SECTION

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

2. Value Engineering Alternative (continued)

If both of the Roundabout Value Engineering Alternatives are accepted, the project layout would be as shown below:


VALUE ENGINEERING ALTERNATIVE PROJECT LAYOUT

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

2. Value Engineering Alternative (continued)

TRAFFIC ANALYSIS:

An initial traffic analysis indicated that a two lane Roundabout has the capacity to meet the demand well past the design year. A more in depth analysis was completed with the Rodel Software for a 165' roundabout. The analysis indicated that this roundabout would operate at LOS of A with design year traffic volumes and with a maximum queue length of 8 vehicles for one of the approaches. Results of the Rodel Analysis are included on following pages.

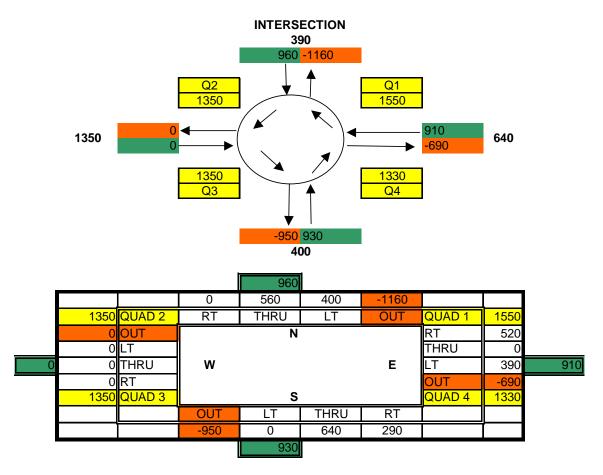
B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

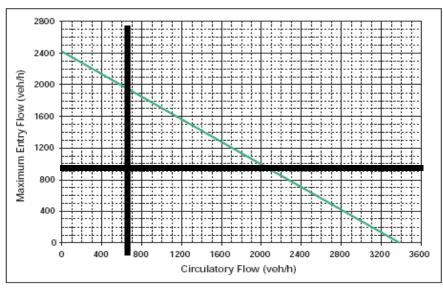
2. Value Engineering Alternative (continued)

R/W REQUIREMENTS

The major cost savings is the reduction in right of way required to construct the Value Engineering Alternative Roundabout. The required right of way is approximately 57,650 SF from 5 parcels at an estimated acquisition cost of approximately \$1,081,000 as compared to an estimated acquisition cost of approximately \$2,348,000 for the right of way to accommodate the as proposed intersection improvements.

CONSTRUCTION COST

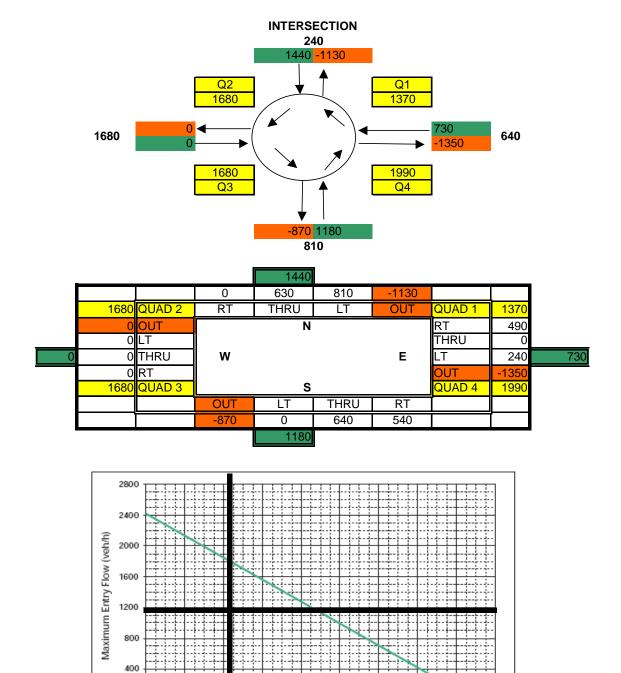

The Value Engineering Alternative Roundabout will reduce construction costs, primarily as a result of a decrease in pavement and drainage quantities. In addition, the traffic signalization system is eliminated. The estimated construction cost of the Value Engineering Alternative is approximately \$872,000 as compared to approximately \$1,251,000 for the as proposed intersection.


RECOMMENDATION

The Value Engineering Team recommends that the Value Engineering Alternative Roundabout be selected as a basis for the development of the final plans since it will function as a free flowing intersection with a desirable LOS and will provide a possible total project cost savings of \$1,654,604.

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

2. Value Engineering Alternative (continued)



AM PEAK

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

2. Value Engineering Alternative (continued)

PM PEAK

2000

2800

3200

1600

Circulatory Flow (veh/h)

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

2. Value Engineering Alternative (continued)

rite 1	*****			* * *					****						****			
*																		*
*	1.3 ± 2	107					FROR	NBUSH/B	им.шя	сипв	СН						3.1	*
	20.00	1 1 10 1					2 11000	MD COUNTY IS	and the same of	Caroac							-0.00	
**	****			* * *			*****										****	
*											+							
	R	(m)	0	. 50		. 50	8.50				*	TITME	PERI	OD:	min		90	
	L	(m)	10		-	. 00	10.00						SLIC		min		15	-
	v	(m)		. 60			3.30						LTS P			15	75	_
*	RAD	(m)	20		-		20.00				-		COST		8/hr	15.		4
	PHI	(d)	30				30.00						PERI		min		75	-
	DIA	(m)		.00			50.00						TYPE		ı/veh	-	TEH.	
4	GRAD	4	200	0.00			0.00					-	PEAK	Branch a		-	AM	1
+	-Contamination	NOTES IN			r	~	Ų				1	E. Phylan	E DANS	амиу ч	P/ Pm		ADATE:	1
41	e e e e e e																	
	T-IIV2 F	CAME	* PCTT	470	T /OWG	/1-	t and t	2nd et	o III	A PT.O	e e e Red	77.4	FLOW	DA STE		r esta	TIME	
	LIESO E	SEMPLES	+	* 100	DOMES	(1.00	C WILL	2190 000			gran. Ar		PLOW	ROCT I.C	, 7	The Sales	TIME	5
*1	SOUTHE	SOUTHWE	ven or	S. 6	560	4.0	0 0			+1 0	 0 ± 1	en e n	75 1	19E 4	75*1	C 40	75	-
	NORTHI			-	290	64).75*1			-
	WESTE			_	520	39).75*1	200 Jan 201	10 100	_
+	WIND I DA	NUMBER OF STREET	*	*	33.2270	2.2	0 0			-1.0	0 = 3	, u - u .	7 D - A	739 (*	0 40	75	-
-			-	-						_	-	-						
-			_	_						_		-			-			-
-			-	-						-	-	-						-
4.				***							 							
+																		18
*	FLOW		79	a.Ta		960	930	910						-				
	CAPAC	TO SECURE	77			960	1952							er A Norway	verse			-
-	AVE 1					.06	0.06								BL S		8.8	-
-	MAX I				_	.08	0.08							all and a	U S HRS		A.	*
+	AVE 0			eh.		1	0.00									9.4		-
*	MAX (-			1	1	5 8						* CO8	7T \$	1.0	2.9	*
*	Authority (ermore.		OLA SE		-	1	8										-
-							****							• ******				
-		- 4 - 4 -					****										***	18

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

2. Value Engineering Alternative (continued)

```
13:2:07
                                                                          3.2
                           FEGENBUSH/BEULAH CHURCH
(m) 8.50 8.50 8.50
                                                * TIME PERIOD
                                                                          90 *
                                                                min
                                        * TIME PERIOD min 90 *

* TIME SLICE min 15 *

* RESULTS PERIOD min 15 75 *

* TIME COST $/hr 15.00 *

* FLOW PERIOD min 15 75 *

* FLOW TYPE pcu/veh VEH *
* L' (m) 10.00 10.00 10.00

* V (m) 6.60 6.60 3.30

* RAD (m) 20.00 20.00 20.00
* PHI (d)
* DIA (m)
           30.00 30.00 30.00
           50.00 50.00 50.00

    GRAD SEP 0 0 0

                                                * FLOW PEAK am/op/pm
* LEG NAME *PCU *FLOWS (1st exit 2nd etc...U)*FLOF*CL* FLOW RATIO *FLOW TIME*
                                           * * *
*SOUTHBOUND*1.05* 630 810 0
                                           *1.00*50*0.75 1.125 0.75*15 45 75 *
*NORTHBOUND*1.05* 540 640 0
*WESTBOUND *1.05* 490 240 0
                                           *1.00*50*0.75 1.125 0.75*15 45 75 *
                                            *1.00*50*0.75 1.125 0.75*15 45 75 *
* FLOW veh 1440 1180 730

* CAPACITY veh 2070 1652 1139

* AVE DELAY mins 0.10 0.14 0.15
                                                            * AVDEL s
                                                           * L O S A *
* VEH HRS 7.1 *
* MAX DELAY mins 0.15 0.24 0.24
* AVE QUEUE veh 2 3 2
                                                           * COST $ 106.3 *
                      3
                                    3 🗠
* MAX QUEUE veh
                             4
```

FEGENBUSH LN/BEULAH CHURCH INTERSECTION VALUE ENGINEERING ALTERNATIVE COST COMPARISON SHEET

DESCRIPTION	UNITS	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
SIGNAL SYSTEM	LS	\$100,000.00	1.0	\$100,000	0.0	\$0
DRAINAGE	LS	\$330,000.00	1.0	\$330,000	0.8	\$264,000
PAVEMENT	SY	\$62.21	9,500.0	\$590,995	7,200.0	\$447,912
SUBTOTAL				\$1,020,995		\$711,912
RIGHT OF WAY	SF	\$18.75	125,219	\$2,347,856	57,647	\$1,080,881
MOBILIZATION (THIS IS SUB+CONTIN. X % =)		5.0%		\$56,155		\$39,155
TRAFFIC CONTROL/MOT		7.0%		\$71,470		\$49,834
CONTINGENCY		10.0%		\$102,100		\$71,191
GRAND TOTAL				\$3,598,576		\$1,952,973

POSSIBLE SAVINGS:

\$1,645,603

B. FEGENBUSH LANE/BEULAH CHURCH ROAD INTERSECTION

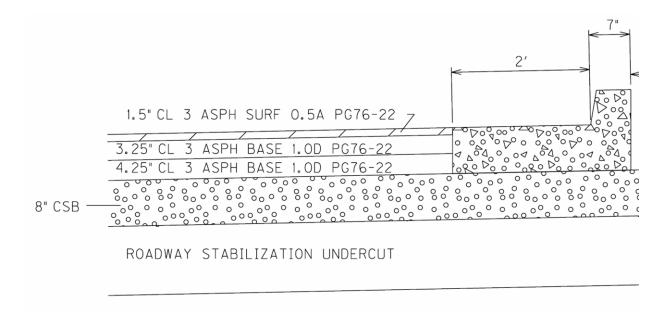
B. COST COMPARISON SHEET BACK UP CALCULATIONS

R/W:							
PARCEL#	SF		AC	AP	VE 3 LEG	AP	VE 4 LEG
1		-	-	-		-	
2		6,438.00	0.15			6,438.00	
3		2,827.00	0.06			2,827.00	
4		2,893.00	0.07			2,893.00	
5		10,394.00	0.24			10,394.00	
6		27,559.00	0.63	27,559.00	610		
7		3,132.00	0.07			3,132.00	
8		4,710.00	0.11	4,710.00			
9		5,360.00	0.12	5,360.00			
10		4,961.00	0.11	4,961.00			
11		24,536.00	0.56	24,536.00	24,536		
12		29,381.00	0.67	29,381.00	29,381		
13		9,625.00	0.22	9,625.00	2,810		
14		4,237.00	0.10	4,237.00	310		
15		6,765.00	0.16			6,765.00	2878
16		4,366.00	0.10			4,366.00	9300
17		12,927.00	0.30			12,927.00	16203
18		-	-			-	
19		138.00	0.00			138.00	
20		21,482.00	0.49			21,482.00	
21		-	-			-	
22		1,045.00	0.02			1,045.00	
23		2,050.00	0.05			2,050.00	
24		-	-	-		-	
25		-	-	-		-	
26		-	-	-		-	
27		-	-	-		-	
28		-	-	-			
29		-	-	-			
30		-	-	-			
31		-	-	-			
32		-	-	-			
33		1,545.00	0.04	1,545.00			
34		2,260.00	0.05	2,260.00			
35		3,631.00	0.08	3,631.00			
36		2,820.00	0.06	2,820.00			
37		1,936.00	0.04	1,936.00			
38		2,658.00	0.06	2,658.00			
39		-	-	-		-	
		199,676.00	4.58	125,219.00	57,647.00	74,457.00	28,381.00
	TAK						
	\$	18.75					
	\$	3,743,925		\$2,347,856	\$1,080,881	\$1,396,069	\$ 532,144

PAVEMENT UNIT COST = \$1,218,200/19,590 SY = \$58.15/SY

C. PAVEMENT DESIGN

"As Proposed"


The mainline pavement design as proposed has several different pavement designs, with the majority of the pavement designs on the mainline calling for:

- 1.5" CL3 ASPH SURF 0.5A PG 76-22
- 3.25" CL3 ASPH BASE 1.0D PG 76-22
- 3.5" CL3 ASPH BASE 1.0D PG 76-22
- 8" CRUSHED STONE BASE
- And an undetermined quantity and type of roadway stabilization

The pavement design, as proposed, uses the higher-grade binder of PG 76-22 for the mainline surface layers and the top two base courses. When a third base course is needed PG 64-22 binder is used. PG 64-22 binder is also used for the surface and base layers on the shoulders, although this quantity is small for this project.

For cost analysis purposes, 1' of #2 stone was assumed to be the roadway stabilization.

The typical as proposed pavement section, characterized as having a maximum aggregate base with minimum asphalt concrete, is shown on the following schematic layout.

AS PROPOSED PAVEMENT DESIGN

C. PAVEMENT DESIGN

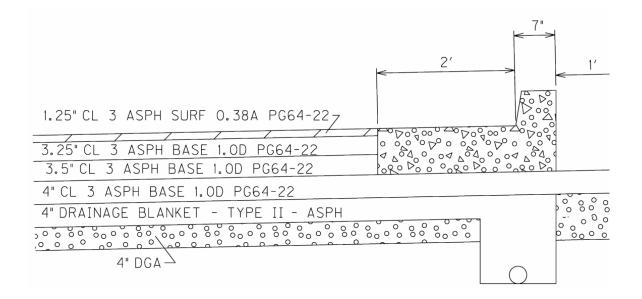
Value Engineering Alternative

The Value Engineering Alternative pavement design uses a maximum thickness of asphalt concrete with a minimum aggregate base design without roadway stabilization. The pavement structure is shown schematically on a following page and is described below:

- 1.25" CL3 ASPH SURF 0.38A PG 64-22
- 3.25" CL3 ASPH BASE 1.0D PG 64-22
- 3.5" CL3 ASPH BASE 1.0D PG 64-22
- 4" CL3 ASPH BASE 1.0D PG 64-22
- 8" DRAINAGE BLANKET TY II
- 4" DGA

For simplicity of construction and due to the short length of this project, this alternative uses the same pavement design throughout the project. The traffic forecast from the Kentucky Transportation Cabinet predicted 5,900,000 20 yr. ESALS for this project. This ESAL count was used in determining the required structural number of 6.27 and therefore used to determine the layer thicknesses.

Economy can be realized on this project by using PG 64-22 binder for each mix instead of the 76-22 binder proposed. The pavement is expected to have less than 7.0 million 20-yr. ESALS and therefore only requires a PG64-22 binder according to the "Kentucky Department of Highways Warrants for Selecting Asphalt Mixtures and Compaction Options." It is also recommended that Class 3 asphalt be used on both the mainline pavement and shoulders since only a limited quantity of Class 2 will be needed (less than 1,000 tons). Consistencies in the mix are expected to achieve more savings here than lowering the mixture grade.


It is also recommended that the roadway not be stabilized chemically due to the added time required for maintenance of traffic. The roadbed is expected to be wet and will have to be dried out first, thereby increasing the amount of time that traffic will have to be maintained in construction zones.

RECOMMENDATION

Based on the preceding factors and a possible construction cost savings of \$115,829, the Value Engineering Alternative Pavement Design is recommended for adoption.

C. PAVEMENT DESIGN

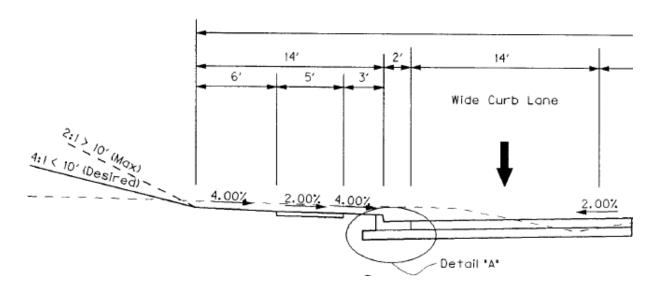
Value Engineering Alternative (continued)

VALUE ENGINEERING ALTERNATIVE PAVEMENT DESIGN

PAVEMENT DESIGN VALUE ENGINEERING ALTERNATIVE COST COMPARISON SHEET

DESCRIPTION	UNITS	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
CL2 ASPH SURF PG 64-22	TON	\$85.00	155.0	\$13,175		
CL3 ASPH SURF PG 64-22	TON	\$65.00			1,477.0	\$96,005
CL3 ASPH SURF PG 76-22	TON	\$71.60	2,391.0	\$171,196		
CL2 ASPH BASE PG 64-22	TON	\$78.60	463.0	\$36,392		
CL3 ASPH BASE PG 64-22	TON	\$51.11			12,696.0	\$648,893
CL3 ASPH BASE PG 76-22	TON	\$64.10	7,812.0	\$500,749		
DRAINAGE BLANKET TYPE II	TON	\$35.85			4,295.0	\$153,976
DGA	TON	\$17.90	11,363.0	\$203,398	5,939.0	\$106,308
STABILIZATION	TN	\$15.00	5,300.0	\$79,500		
MTV	TON	\$1.80	1,576.0	\$2,837		
EXCAVATION	CUYD	\$9.50	23,646.0	\$224,637	13,517.0	\$128,412
SUBTOTAL				\$1,231,884		\$1,133,594
MOBILIZATION (THIS IS SUB+CONTIN. X % =)			5.0%	\$67,754	4.0%	\$50,785
TRAFFIC CONTROL/MOT			7.0%	\$86,232	5.0%	\$56,680
CONTINGENCY			10.0%	\$123,188	12.0%	\$136,031
GRAND TOTAL				\$1,509,058		\$1,377,090

POSSIBLE SAVINGS:


\$131,968

D. DRAINAGE SYSTEM

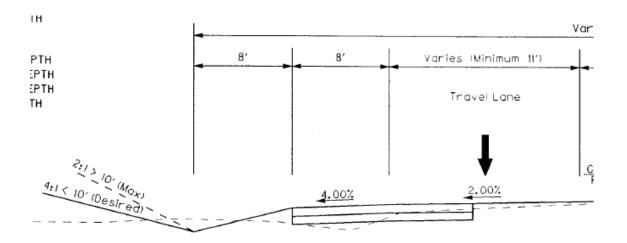
1. "As Proposed"

The as proposed drainage design for the project consists primarily of curb and gutter with a closed drainage system. Transition swales are provided to match the existing open channel swales on the intersection approaches.

The as proposed typical curb and gutter section is shown in the layout below:

AS PROPOSED TYPICAL CURB AND GUTTER SECTION

There are 46 curb inlets and 25-drop box inlets with corresponding storm sewer pipe connections to convey the storm water runoff to outfalls within the project limits.


It should also be noted that sidewalks are proposed on each side of the paved roadways within the project limits even though none of the existing intersection approaches now have sidewalks to connect to the as proposed sidewalks.

D. DRAINAGE SYSTEM

2. Value Engineering Alternative

The Value Engineering Alternative is to maintain the existing rural section with open drainage swales and 8' wide paved shoulders for this relatively short project (0.93miles) as shown in the typical section below. This typical section provides minimum 11' wide outside thru lanes as is currently proposed with 8' paved shoulders, 4 to 1 front slope, 2' deep drainage swales, and 4 to 1 typical back slopes with a maximum of 2: 1. Since there are no existing sidewalks or curb and gutter within the confines of the proposed project, the Value Engineering Team concluded that the project should match the existing conditions.

The 8' paved shoulder can be utilized for bicycles, a safety lane for stranded motorists, a storage area for snow removal, and by the occasional pedestrian.

VALUE ENGINEERING ALTERNATIVE TYPICAL SECTION

The proposed cross sections indicate that the Value Engineering Alternative typical rural section can be constructed within the proposed right of way limits established for the as proposed design.

The Value Engineering Team concluded that the curb and gutter section shown at the right of Sta. 121+50 should be constructed as proposed for the entire triangle to define access to adjacent businesses.

Although not included in the cost estimate, permitting the use of high-density polyethylene (HDPE) pipe as an acceptable alternate for storm drains may be cost effective. A local pipe supplier advised the Value Engineering Team that the HDPE pipe could be supplied for approximately two percent less than acceptable alternate types of pipe. It is therefore recommended that a special provision be included in the construction contract documents permitting the use of HDPE pipe for storm drains.

D. DRAINAGE SYSTEM

2. Value Engineering Alternative (continued)

RECOMMENDATION

As shown in the attached cost comparison tabulation, the Value Engineering Alternate may provide an estimated savings of \$197,037. Based on this potential savings and the desirability of maintaining the existing typical roadway section on the approach roadways with the open channel drainage swales, the Value Engineering Alternative typical section is recommended for further consideration.

DRAINAGE VALUE ENGINEERING ALTERNATIVE COST COMPARISON SHEET

DESCRIPTION	UNITS	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
Standard Curb And Gutter	LF	\$17.10	7,593.0	\$129,840	515.0	\$8,807
Storm Sewer Pipe-15"	LF	\$35.80	2,961.0	\$106,004	840.0	\$30,072
Storm Sewer Pipe-18"	LF	\$39.80	2,299.0	\$91,500	730.0	\$29,054
Storm Sewer Pipe-24"	LF	\$53.40	472.0	\$25,205	350.0	\$18,690
Storm Sewer Pipe-30"	LF	\$62.30	257.0	\$16,011	0.0	\$0
Storm Sewer Pipe-36"	LF	\$78.00	40.0	\$3,120	40.0	\$3,120
Storm Sewer Pipe-48"	LF	\$109.70	58.0	\$6,363	58.0	\$6,363
Storm Sewer Pipe-48" Eq	LF	\$125.00	50.0	\$6,250	50.0	\$6,250
Sloped Box Outlet Type 1-15"	EACH	\$1,369.20	1.0	\$1,369	11.0	\$15,061
Curb Box Inlet Type A	EACH	\$3,576.80	40.0	\$143,072	0.0	\$0
Curb Box Inlet Type F	EACH	\$2,000.00	5.0	\$10,000	0.0	\$0
Drop Box Inlet Type 3	EACH	\$2,494.80	1.0	\$2,495	9.0	\$22,453
Drop Box Inlet Type 11	EACH	\$1,500.00	9.0	\$13,500	11.0	\$16,500
Drop Box Inlet Type 13g	EACH	\$2,280.00	13.0	\$29,640	0.0	\$0
Adjust Manhole Frame To Grade	EACH	\$445.00	2.0	\$890	2.0	\$890
Channel Lining Class III	TON	\$28.80	70.0	\$2,016	70.0	\$2,016
Concrete Class A	CU YD	\$714.60	53.0	\$37,874	53.0	\$37,874
Steel Reinforcement	LB	\$1.50	1,222.0	\$1,833	53.0	\$80
Entrance Pipe-15"	LF	\$33.10	218.0	\$7,216	770.0	\$25,487
Entrance Pipe-18"	LF	\$35.20	42.0	\$1,478	0.0	\$0
Entrance Pipe-24"	LF	\$57.60	82.0	\$4,723	45.0	\$2,592
Entrance Pipe-24" Equiv	LF	\$80.00	95.0	\$7,600	95.0	\$7,860
Channel Lining Class Ii	TON	\$31.96		\$0	100.0	\$3,196
Junction Box-24"	EACH	\$1,693.80		\$0	1.0	\$1,694
SUBTOTAL 1 ST PAGE				\$647,999		\$237,799

(continued)

(continued)

DESCRIPTION	UNITS	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
Junction Box-36"	EACH	\$1,434.70	2.0	\$2,869	2.0	\$2,869
Junction Box-48"	EACH	\$1,800.00	2.0	\$3,600	2.0	\$3,600
Erosion Control Blanket (Special)	SQ. YD	\$10.00		\$0	100.0	\$1,000
Temporary Mulch	SQ. YD	\$0.17	76,500.0	\$13,005	77,000.0	\$13,090
Temporary Ditch	LF	\$1.50	4,915.0	\$7,373	4,915.0	\$7,373
Temporary Silt Fence	LF	\$2.60	4,915.0	\$12,779	4,915.0	\$12,779
Clean Temporary Silt Fence	LF	\$0.36	14,745.0	\$5,308	14,745.0	\$5,308
Silt Trap Type A	EACH	\$360.90	16.0	\$5,774	16.0	\$5,774
Clean Silt Trap Type A	EACH	\$64.90	48.0	\$3,115	48.0	\$3,115
Silt Trap Type B	EACH	\$378.00	64.0	\$24,192	64.0	\$24,192
Clean Silt Trap Type B	EACH	\$61.00	192.0	\$11,712	192.0	\$11,712
Silt Trap Type C	EACH	\$238.80	32.0	\$7,642	32.0	\$7,642
Clean Silt Trap C	EACH	\$76.10	96.0	\$7,306	96.0	\$7,306
Temp Seeding And Protection	SQ. YD	\$0.10	55,540.0	\$5,554	55,540.0	\$5,554
Seeding And Protection	SQ. YD	\$0.30	32,000.0	\$9,600	33,000.0	\$9,900
Sodding	SQ. YD	\$4.00	6,080.0	\$24,320	6,100.0	\$24,400
Erosion Control Blanket	SQ. YD	\$1.70	2,910.0	\$4,947	3,800.0	\$6,460
Cored Hole Drainage Box Con-4"	EACH	\$161.00	50.0	\$8,050	50.0	\$8,050
Perforated Pipe-4"	LF	\$5.50	200.0	\$1,100	2,000.0	\$11,000
Sidewalk-4" Conc	SQ. YD	\$29.50	3,425.0	\$101,038	0.0	\$0
Paved-8' Shoulder	SQ YD	\$43.26			7,796.0	\$337,255
Additional Perm. Easement	SQ. FT.	\$16.88			859.0	\$14,500
SUBTOTAL 1 ST PAGE				\$259,284		\$522,879

(continued)

(continued)

DESCRIPTION	UNITS	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
SUBTOTAL 1 ST PAGE				\$647,999		\$237,799
SUBTOTAL 2 ND PAGE				\$259,284		\$522,879
SUBTOTAL				\$907,283		\$760,678
MOBILIZATION (THIS IS SUB+CONTIN. X % =)			5.0%	\$49,901	5.0%	\$41,873
TRAFFIC CONTROL/MOT			7.0%	\$63,510	7.0%	\$53,247
CONTINGENCY			10.0%	\$90,728	10.0%	\$76,068
GRAND TOTAL				\$1,111,422		\$931,866

POSSIBLE SAVINGS:

\$179,556

D. DRAINAGE SYSTEM

COST COMPARISON SHEET BACK UP CALCULATIONS

Calculations for 8' wide shoulder

EXC.
$$-\frac{2c^{2}(777c)}{12}(\frac{1}{2})(\frac{$$

E. DESIGN COMMENTS – MOT

PRELIMINARY DISCUSSION

This design comment addresses only the portion of the Mainline north of Sta. 127+50 and is considered by the Value Engineering Team as a possible alternative MOT plan.

The Value Engineering Team accepts the "As Proposed" MOT south of Sta. 125+00.

It is noted that the "As Proposed" MOT is shown in nine phases, and the MOT is portrayed this way for clarity in presentation on the plans.

Phases 1 thru 5 primarily concern the work on the Mainline from the beginning of the project (Sta. 110+00) to just south of the Outer Loop/S.Watterson Trace intersection (Sta.129+60), including all the work on Beulah Church Road east.

Phases 6 and 7 concern the construction of Fergenbush Lane northward from the Outer Loop/S.Watterson Trace intersection, and reconstruction within the intersection.

Phases 8 and 9 concern the construction of Outer Loop westward from the Outer Loop/S.Watterson Trace intersection, and reconstruction within the intersection..

A contractor could actually do the work shown in Phases 6, 7, 8 and 9 during the same time that work is being done on Phases 1 thru 5.

AS PROPOSED MOT

In Phase 1, traffic on Fegenbush Lane between Sta. 126+50 and Sta. 130+00 is maintained on the westerly 33' of the existing pavement while the east side of the new roadway is constructed. Also, traffic on S. Watterson Trace between Sta. 50+40 and Sta. 54+00 is maintained on the existing pavement while some work on the south side of the existing roadway is constructed.

In Phase 2, traffic on Fegenbush Lane between Sta. 126+50 and Sta. 130+00 is maintained on the easterly 33' of the newly constructed existing pavement while the west side of the new roadway is constructed, thereby completing this 350' portion of Fegenbush Lane.

In Phases 6 and 7, first the east half and then the west half of Fegenbush Lane from Sta.130+40 to the End of Project is constructed while maintaining one-way southbound traffic, (with some restrictions to access). Northbound Fegenbush Lane traffic is detoured west on Outer Loop to a right turn northward on Vaughn Mill Road.

In Phase 8, all of S. Watterson Trace, together with the east portion of the intersection, is completed. At the intersection, two-way traffic is maintained alternately on each side. East of the intersection, the construction on S. Watterson Trace is primarily an overlay of the existing pavement.

In Phase 9 all of Outer Loop, together with the west portion of the intersection, is completed. At the intersection, two-way traffic is maintained alternately on each side. West of the intersection, the construction on Outer Loop is primarily an overlay of the existing pavement.

E. DESIGN COMMENTS – MOT

This Design Comment suggests a way to reconstruct the intersection at Outer Loop/S. Watterson Trace in only two sequences, rather than the six sequences called for in the "As Proposed" Plans.

Building in a lot of different phases and in close proximity to traffic may make it more difficult for the contractor to attain quality in construction and maintain worker safety at this intersection.

MAINTENANCE OF TRAFFIC

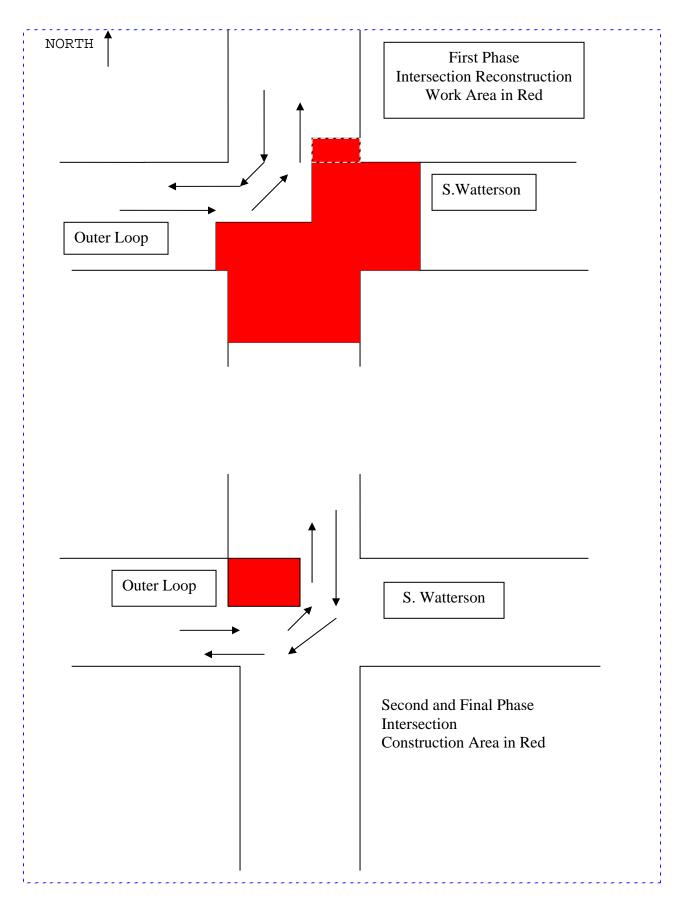
VALUE ENGINEERING SUGGESTION

The old pre-1950 pavements of Outer Loop and of S. Watterson Trace can be utilized to detour most of the traffic away from the intersection of Mainline (Fegenbush Lane) and Outer Loop/S. Watterson Trace.

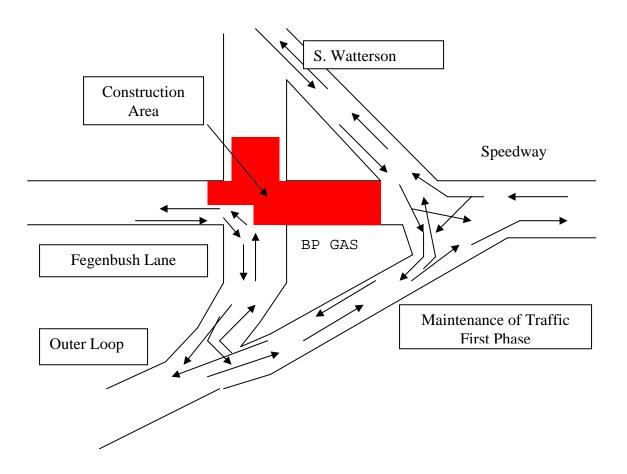
These two detour roads meet the Mainline at Sta. 127, where a temporary signal is necessary. This signal can reuse the same equipment that the "As Proposed" MOT Phase 3 uses at Sta. 124.

The following traffic movements can then be removed from the intersection at Sta. 130:

- NB Fegenbush Lane all turning traffic to Outer Loop and to S. Watterson Trace. Thru traffic is routed on the detour road to Outer Loop and then, by a turn, thru the intersection.
- S. Watterson Trace all traffic.
- Outer Loop all traffic except EB to NB


The only traffic still operating thru the intersection is the two-way traffic to and from Fegenbush Lane and Outer Loop.

In the initial phase, that turning traffic can operate on the northwest quadrant of the intersection, freeing the other three quadrants of the intersection for the roadway reconstruction in a single phase.


The intersection roadway reconstruction can then be completed in a second phase when the turning traffic uses the previously reconstructed part of the intersection. These suggested construction phases are shown schematically on following pages.

The advantage of this suggested MOT method is that it allows the intersection of Mainline (Fegenbush Lane) and Outer Loop/ S.Watterson Trace to be built during two phases rather than four phases (six segments), with substantially fewer shifts of traffic.

There may be an additional cost for temporary pavement and the temporary signal, but that cost is probably offset by a reduction in construction costs and the cost of shifting traffic numerous times.

VII. Development Phase E. Design Comments-MOT

VII. Development Phase E. Design Comments-MOT

VIII. SUMMARY OF RECOMMENDATIONS

It is the recommendation of the Value Engineering Team that the following Value Engineering Alternatives be carried into the Project Development process for further development.

Recommendation Number 1: Fegenbush lane/S. Watterson Trace/Outer loop Intersection

The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative provides a free flowing Roundabout in lieu of a signalized intersection.

If this recommendation can be implemented, there is a possible savings of \$1,327,418.

Recommendation Number 2: Fegenbush Lane/Beulah Church Road Intersection

The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative provides a free flowing Roundabout in lieu of a signalized intersection.

If this recommendation can be implemented, there is a possible savings of \$1,645,603.

Recommendation Number 3: Pavement Design

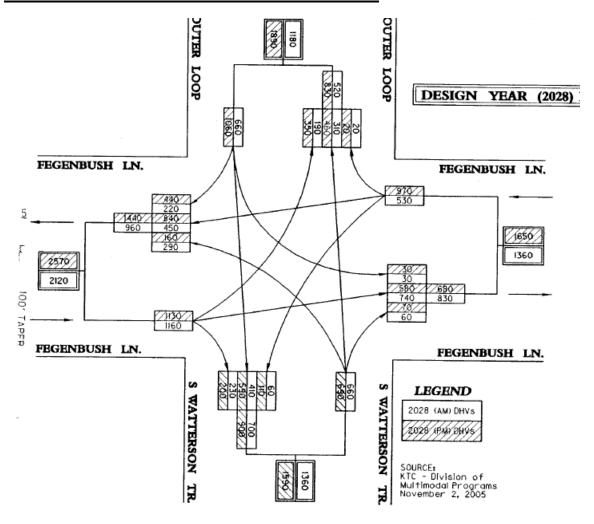
The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative minimizes the thickness of the aggregate base and maximizes the depth of the asphalt concrete to obtain the required pavement structural support for the design year traffic.

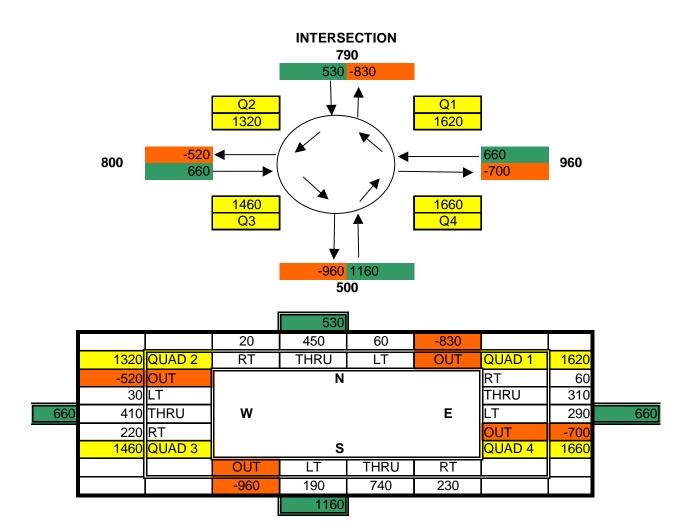
If this recommendation can be implemented, there is a possible savings of \$131,968.

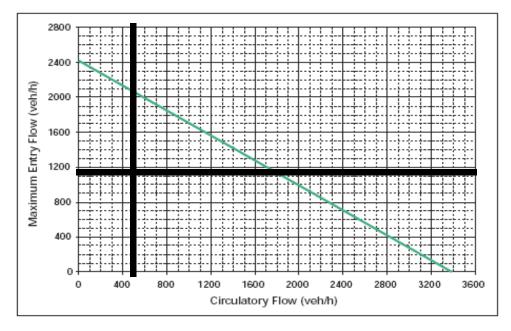
Recommendation Number 4: Drainage System

The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative has open channel swales with 8 ft. paved shoulders as the typical section instead of curbs and gutters with a closed drainage system. High-density polyethylene pipes are proposed as an acceptable alternate for all storm drains.

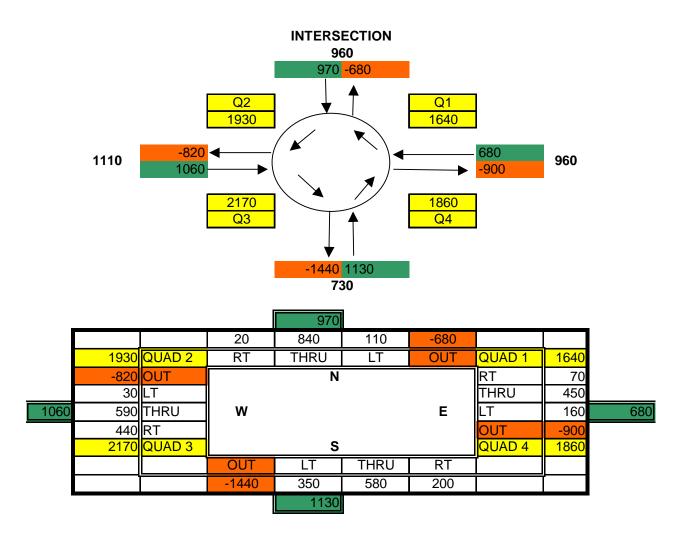
If this recommendation can be implemented, there is a possible savings of \$179,556.

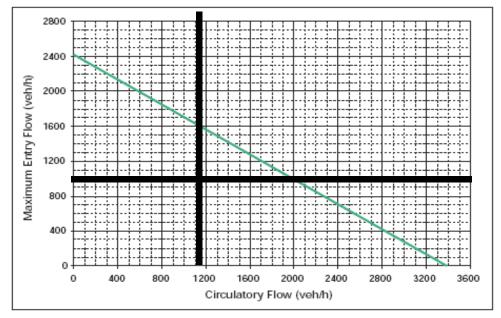

FENGENBUSH LANE AND BEULAH CHURCH ROAD INTERSECTION VALUE ENGINEERING STUDY PRESENTATION


February 12-16, 2007


NAME	AFFILIATION	PHONE
Robert T. Semons	KYTC VE Coordinator Program Performance	502-564-4555
Jerry Love	VE Group	850-627-3900
Bill Keating	VE Group	850-627-3900
Mike Bezold	KYTC Dist.6	859-341-2700
Kelly Meyer	Quest Engineers	502-584-4118
Joe Tucker	KYTC Design	502-564-3280
Brent A. Sweger	KYTC Planning	502-564-7183
Erin Van Zee	KYTC Planning	502-564-7183
Joel Pate	VE Group	850-627-3900
Thomas Hartley	VE Group	850-627-3900
Ananias Calvin III	KYTC Highway Design	502-564-3280
Tala Quino	KYTC Dist 5 Design	502-367-6411
John Callihan	KYTC Dist. 5 Preconstruction	502-367-6411

IX. APPENDICES


FEGENBUSH/OUTER LOOP TRAFFIC ANALYSIS:



AM PEAK

PM PEAK

North/South Street HCS2000: Signalized Intersections Release 4.1 OUTER LOOP .. X E X PLANNING AMALYBIS All other areas 2/12/2007 D-5 East/West Street T. HARTLEY Project ID: FEGENBUSH - OUTER LOOP 4-LEG 2028 KALC Quincy, FL Phone: 850-627-3900 E-Mail: thartley09@aol.com PEGENBUSH Analysis Time Period: Analysis Year: 2066 Luten Road Area Type: Date Performed: Thomas Hartley Jurisdiction: Intersection: Agency/Co.: VE Group Analyst:

Eastbo	tbound	- Xear	stbound	평	Tiok -	rthbo	pun	mos –	athbound	700
H H	DÉ.	H	H	pć.		pii H	pc:	<u>П</u>	H	pp.
Num. Lanes 1 1	H	_		-	_	64	1	Ļ	64	
Volume 30 550	077	1.60	480	20	350	580	550	1110	940	8
		_	×		_	X.		_	Z	
_			z		_	Z		_	25	
reat. I U		D			<u></u> ⊢			D		

9			
9			
09			
09			
capacity:			
(if [16] > 3.5} oft turn sneaker			
Left Turn Check 20, Permitted le 7200/Cm			

	SIGNAL OPERATIONS WORMSHEET	RATIONS	WORKS!	EEE			
Phase Plan Selection from Lane	Lane Volume Workshest	Worksh	41	EAST	WEST	NORTH	SOUTH
Critical through-RT vol: [19] LT lane vol: [5] Left turn protection: (P/U/N) Dominant left turn: (Indicate	[19] J/N) Sate by '<')			2000	480 0 0	0 0 0 0	420 0 U
Selection Criteria based on the specified left turn protection < Indicates the dominant left t for each opposing pair	on the ection left turn		Plan 1: U Plan 2a: U Plan 2b: P Plan 3a: <p Plan 3b: P</p 				
Phase plan selected (1 to 4	4t					П	
Min. cycle (Cmin) 60	N. C.		cycle (Cmax)	120			
Timing Plan	Value	E4 1	EAST-WEST	표	Ph 1	NORTH-SOUTH	TH Eh 3
Movement codes Critical phase vol [CV] Critical sum [CS] CBD adjustment [CBD]	1197	EWT 550		0	MS 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	a	0
rence sum time/phase time/cycle	1539 B	7.5	0	0	77	0	0
Cycle length [CYC] Phase time Critical v/c Ratio [Xcm] Status	60.0 0.90 Near capacity	27.9	0.0	0.0	32.1	0.0	0.0

HCS2000: Signalized Intersections Release 4.1

VE Group 2066 Luten Road Thomas Hartley

Quincy, FL Phone: 850-627-3900 E-Mail: thartley098aol.com

PLANNING ANALYSIS

100 (E) (E)

I. HARTLEY 4-LEG Intersection: Analyst:

All other areas 2/12/2007 KYTC Area Type: Date Performed: Agency/Co.:

D=0 Jurisdiction:

Analysis Time Period: AM Analysis Year: 2028 Project ID: FEGENBUSH - OUTER LOOP

East/West Street

North/South Street

FEGENBUSH

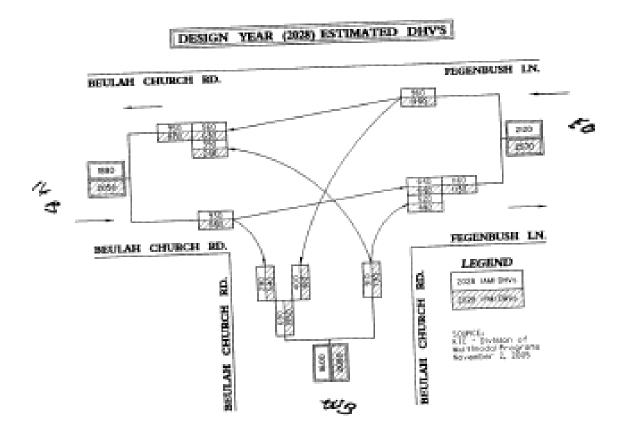
THE PERSON NAMED OF THE PE

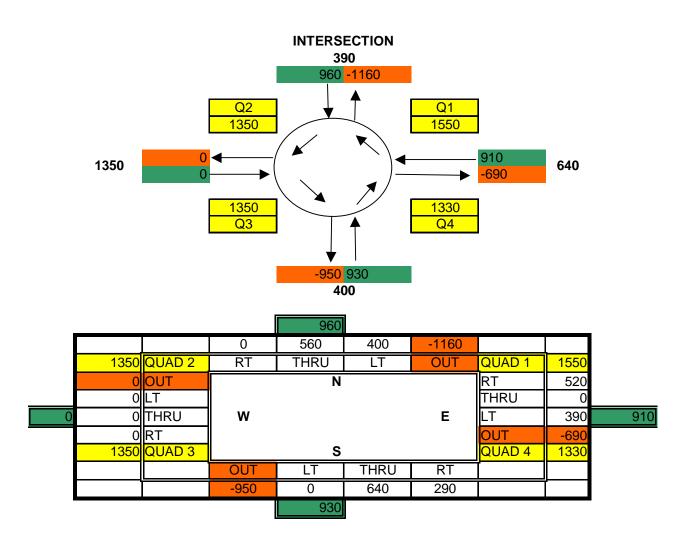
VOLUME DATA

_	_	_	_ 	_	_	-	_	
punoqu	œ			0				
uthbo	\vdash		m	450	×	×		
Sout	II.	_		091	_		5	
p	œ			230				90
Northbound	⊢			046	×	100		area
Mor	Н		-	190	. ¬		=	other
775	<u>ac</u> ;		Ī	- 09				
estbound	⊱		CV.	310 6	25	20		Type
(0) (0) (0)	П		_	068			D	Area
_			Π	200			_	
punoq:	[1			10				0.90
East	i		EN .	30 4	\mathbb{Z}	×	5	otor:
_	-	'	_	416	_	_	_	10 9-4
			Lanes	olume	Ting	ġ.	Treat.	hour
			Num.	Volu	Parking	COOK	17	150 100 100 101

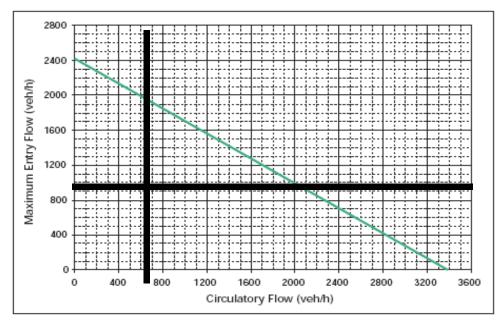
ACCOUNT OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE P

LANE VOLUME WORKSHEET	EAST	E SS	NORTH	SOUTH
	BOUND	BOUND	BOUND	BOUND
LEPT TURN MOVEMENT				
1. LT volume 2. Opposing mainline volume 3. Number of exclusive LT lanes Cross Product [2] * [1]	30 370 1	290 630 1	190 470 1 89300	60 970 1 58200
Left Lane Configuration (E=Excl, S=Shrd): Left Turn Treatment Type:	ы⊳	ы⊳	мБ	мр
4. LT adjustment factor 5. LT lane vol	1.000	1.000	1.000	1.000
RIGHT TURN MOVEMENT				
Right Lane Configuration [E-Excl, S-Shrd] 6. RT volume 7. Exclusive lanes 8. RT adjustment factor 9. Exclusive RT lane volume 10. Shared lane vol	720 1 0.850 259	E 1 0.850 71	E 271 271	24 24 24
THROUGH MOVENENT				
11. Thru volume 12. Parking adjustment factor 13. No. of thru lanes including shared 14. Total approach volume 15. Prop. of left turns in lane group 16. Left turn equivalence 17. LT adj. factor:	410 2.00 410 2.00	310 1.00 2 310 0.00 2.61	740 1.00 1.740 2.23	MD + MD + + 1
18. Through lane volume 19. Critical lane volume	20.00	01 CH	740	450

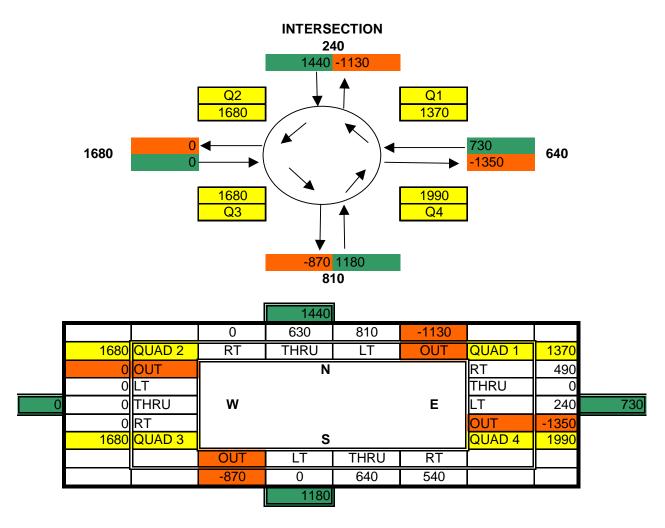

	SIGNAL OPERATIONS WORKSHEET	ATIONS FO	RKSHE	EH EH			
Phase Plan Selection from Lane	Lane Volume	Volume Worksheet		EAST	MEST	NORTH	SOUTH
Critical through-RT vol: [19] LT lane vol: [5] Left turn protection: (P/U/N) Dominant left turn: (Indicate	[19] U/N) cate by '<']		200	25.59 U 0	155 0 0 0	740 0 0	450 0 U
Selection Criteria based on the specified left turn protection < Indicates the dominant left to for each opposing pair	on the ection left turm	Plan Plan Plan Plan Plan	22a: U 25a: U 36: P 36: A				D d b d d k
Phase plan selected (1 to	0			П		Τ	
Min. cycle (Cmin) 60	Max	Max. cycle (Cmax)	C X G E	120			
Timing Plan	Value	Ph 1 Ph 2	2 2 2	(m)	Ph 1	NORTH-SOUTH	H. 144
Movement codes Critical phase vol [CV] Critical sum [CS] CBD adjustment [CBD]	999	259 0			740	0	0
Reference sum [RS] Lost time/phase [PL] Lost time/cycle [TL]	1539 8	0		0	~*	0	0 -
Cycle length [CYC] Phase time Critical v/c Ratio [Xcm] Status	60.0 0.75 Under capacity	17.5 0.0 ity		0.0	5.5	0.0	0.0

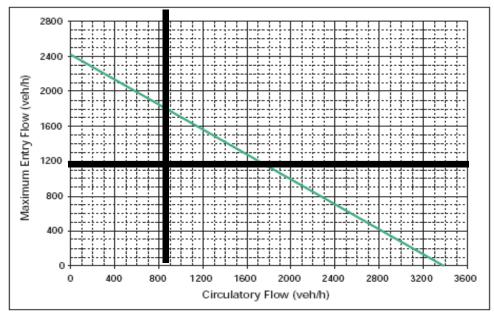

********	*******					*****
*						
* 13:2:07		FID	SESSION / OUT	TERLOOP		78 *
• E (m)	8.50	8.50 8.50	8.50	* TIME P	ERIOD min	90 *
* 1/2 (m)		10.00 40.00	30.00	* TIME S		15 *
* V (m)		6.60 3.30	5.60			5 75 .
- Common		4144 2124	ALC: 10 THE RE			
* EAD (m)		20.00 20.00	20.00		A 44 mm	0.100
 PHI (d) 		30.00 30.00	30.00	* FLOW P		5 75 *
* DIA (m)		55.00 55.00	55.00	 FLOW T 		VEH *
* GRAD SEP	0	0 0	0	* FLOW IN	EAX am/op/pm	AM *
•				*		
* LEG NAME *	FCU *FLOW	AS (lst exit	2md etc	.U) *FLOF*CL* FL	OW RATIO *FLO	W TIME*
* *	*					+
SOUTHBOUND	1.05* 2	20 450 60	0	*1.00*50*0.75	1.125 0.75*15	45 75 *
*EASTBOUND *	1.05* 22	00 410 30	0	*1.00*50*0.75	1.125 0.75*15	45 75 +
NORTHBOUND	1.06* 23	0 740 230	Ö	*1.00*50*0.75	1.125 0.75*15	45 75 *
*WESTBOUND *	1.05* (0 310 290	0	*1.00*50*0.75	1.125 0.75115	45 75 1
					*	

* FLOW	web	530 660	1200	660	-	
* CARACITY	west					
		1465 1780		1635	 AVDEL s 	5.3 *
* AVE DELAY		0.06 0.05		0.06	* L O 8	24. *
 MAX DELAY 		0.09 0.07		0.09	 VIII IIRS 	4.5 *
	web	1 1	3	1	* COST \$	67.7 *
 MAX GRERE 	web	1 1	4.	1	•	
•					*	*
*********	*******					


***							******							
*														
	13:2:07	7			FE/	SEMBUSH	/OUTERLA	COP					7.9	
*														
* * *	*****	*****		*****									enner	4.6
* 8	(m)	8.3	50 8	.50	0.50	8.50		+	TIME	PERIO	SD mrii	n	90	
4 1	$J = \{m\}$	4.0 . 1	90 30	.00	40.00	30.00			TIME	SLICE	i mis	=	1.5	
A 1	(m)	3	10 6	.60	3.30	6.60			RESU	ILTS PE	SETOD min	0 15	75	
+ B	(m) (AD	20.4	00 20	.00	20.00	20.00			TIME	COST	3/h:	r 1.5	. 00	ė.
4 9	nti (d)	30.7	00 30	.00	30.00	30.00			FLON	PERIO				
* D	(m) AI	55.4	10 55	.00	55.00	55.00			FLON	TYPE	pou/wei	h i	VEH	4
4 9	RAD SEE	9	0	0	0	a			FLON	PHAK	an/op/pr		PM	
											and alter to	_		
***	*****	*****	****	****	*****									4.6
* L	BG NAME	* PCU	FLOWS	(lat	exit	2nd et	a	FLORM	CL/s	FLOW B	ATTO	FLOW	TIME	64
							+	+	+					4
4.90	UTHBOUK	D+1.064	2.0	840	11.0	0		1.00*5	50±0.	75 1.1	25 0.75	125 43	5 7.5	*
*EB	STROUND	*1.05	440	590	3.0	0					25 0.75			4
+390	RITHBOUN	D*1.061	200	580	354	0		1.00*	5040.	75 11	25 0.75	135 43	5 75	
AWE	STROUND	*1.05	7.0	450	160	0		1.00*	50+0.	75 11	25 0.75	115 43	5 75	
*														*
*														*
	*****			****			*****			****	*****			
														*
4 3	TLOW	negi	b	970	1060	1130	680							4
4 0	APACITY	wei	5 1	379	1555	1531	1664				AVDEL	8	8.5	*
4 8	OW DELA	artini Y	0 0	-3.7	9.14	9.17	0.06				L O	9	A.	*
4.8	MAX DELA	Y mine	e 0	.28	0.23	0.23	0.09			4	VEH HB	8	9.0	4
* 8	AR CORO	8 vel	h .	3	2	3	1				COST	5 13	15.6	*
4 8	ONX QUUU	E voji	5	4	4	5	1							
				_		-	_							*
				****	*****									

5% trucks


FEGENBUSH/BEULAH CHURCH TRAFFIC ANALYSIS:



AM PEAK

PM PEAK

HCS2000: Signalized Intersections Release 4.1

Thomas Hartley

VE Group

2066 Luten Road

Quincy, FL Phone: 850-627-3900 E-Mail: thartley09@aol.com

PLANNING ANALYSIS

Fax

T. HARTLEY AP T-INTERSECTION Intersection: Analyst:

KYIC Agency/Co.: Area Type: Date Performed:

All other areas 2/12/2007 D-5

Analysis Time Period: AM Analysis Year: 2028 Project ID: FEGENBUSH - BEULAH CHURCH Jurisdiction:

East/West Street

FEGENBUSH

North/South Street BEULAH CHURH

Colomo Asidos Operaçõesa,

VOLUME DATA

-	-	-	-	_	-	_	-	
pun	DC)		0	0				
Southbound	H		2	560	z	Z		
l Soi	I.		2	1400	_	_	c.	
nd	æ		1	290				00
Northbound	E		CI	640	z	z		other areas
l No	ľ		0	0	_	_	c-	other
75	ĸ		L	520				A11
Westbound	E			-,	N	N		Area Type: All
Wes	Γ		1	390		_	z	Area
_	_		_		_	-	_	
astbound	ĸ		0					0.90
istb	H		0					
_ E	1	_	0	_	_	_	_	factor
			Lanes	<u>a</u>	ng	.:	reat.	hour
			Num.	Volume	Parking	Coord.	LT TY	Peak hour

EAST WEST NORTH SOUTH BOUND BOUND BOUND		390 0 400 0 560 930 1 0 2 0 0 372000	N S C S	0.850 0.920 459 0 217		E E S 520 290 0 1 1 0 0.850 0.850 0.850 612 341 0		0 640 560 1.00 1.00 0 2 2 0 640 560 0.00 0.00 0.00 2.44 1.000 0 320 280 612 341 280
LANE VOLUME WORKSHEE	LEFT TURN MOVEMENT	1. LT volume 2. Opposing mainline volume 3. Number of exclusive LT lanes Cross Product [2] * [1]	<pre>Left Lane Configuration (E=Excl, S=Shrd): Left Turn Treatment Type:</pre>	4. LT adjustment factor 5. LT lane vol	RIGHT TURN MOVEMENT	Right Lane Configuration (E=Excl, S=Shrd) 6. RT volume 7. Exclusive lanes 8. RT adjustment factor 9. Exclusive RT lane volume 10. Shared lane vol	THROUGH MOVEMENT	11. Thru volume 12. Parking adjustment factor 13. No. of thru lanes including shared 14. Total approach volume 15. Prop. of left turns in lane group 16. Left turn equivalence 17. LT adj. factor: 18. Through lane volume 19. Critical lane volume

Left Turn Check (if [16] > 3.5) 20. Permitted left turn sneaker capacity: 7200/Cmax

0.9

	1	d
	į	
		4
	1	
	į	

SIGNAL OPERATIONS WORKSHEET

Phase Plan Selection from Lane Volume Worksheet	Lane Volume	Workshe		EAST	WEST BOUND	NORTH	SOUTH
Critical through-RT vol: [19] LT lane vol: [5] Left turn protection: (P/U/N) Dominant left turn: (Indicate by '<')	[19] 'U/N) .cate by '<')				612 459 N	341 0 U	280 217 P
Selection Criteria based on the specified left turn protection	on the ection	PI		n n d	DaD	224	n d
< Indicates the dominant left turn for each opposing pair	left turn	II II	Plan 3a: <p Plan 3b: P Plan 4: N</p 			0 0 Z	a o n
Phase plan selected (1 to 4)	4)				7	2a	
Min. cycle (Cmin) 60	Max	Max. cycle (Cmax)	(Cmax)	120			
Timing Plan	Value	Ph 1	EAST-WEST Ph 2	Ph 3	NO) Ph 1	NORTH-SOUTH	H Ph 3
Movement codes Critical phase vol [CV] Critical sum [CS] CRD adjustment [CBD]	1170	EWT 612	0	0	STL 217	NST 341	0
Reference sum [RS] Lost time/phase [PL] Lost time/cycle [TL]	1539	4		0	4	Φ	0
Cycle length [CYC] Phase time Critical v/c Ratio [Xcm]	0.95	29.1	0.0	0.0	12.9	18.0	0.0
0.000							

HCS2000: Signalized Intersections Release 4.1

Thomas Hartley VE Group

2066 Luten Road

Quincy, FL Phone: 850-627-3900

Phone: 850-627-3900 E-Mail: thartley09@aol.com

PLANKING ANALYSIS

Fax:

T - INTERSECTION T. HARTLEY Analyst:

KYIC Intersection: Agency/Co.:

All other areas 2/12/2007

D-5 Area Type: Date Performed: Jurisdiction:

PM 2028 Analysis Time Period: Analysis Year:

Project ID: FEGENBUSH - BEULAH CHURCH

PEGENBUSH

North/South Street BEULAH CHURH East/West Street

	,	ė	
	۱		
	i	۰	
	۰	۹	
		,	
	1	۰	

VOLUME DATA

-	-	-	_	-	-	-	-	
nnd	ĸ		0	0				
Southbound	H		2	630	z	z		
Sol	H	_	2	810	_		ç.	
nd	œ		1	540				00
Northbound	H		2	640	z	z		areas
Nor	ŭ		0	0			Ç-+	other.
-	_	_	-	_	_	-	_	411
und	04		~	490				
Westbound	⋳		0		Z	z		Area Type:
Me	П	_	-1	1240	_	_	ç.	Area
	œ					-		
astbound			0					0.30
stb	E		0					
Ea	T	_	0	_	_	_	_	factor
			Lanes		b		at.	Peak hour fa
				ume	rkin	Coord.	Treat	kh
			Num	Vol	Par	000	LI	Pea

SOUTH		810 1180 2 955800	ഥ다	0.920		s 0 0.850		630 1.00 2 630 0.00 315 315
NORTH		630	ω D	0		E 540 1.850 635		640 1.00 2 640 0.00 2.61 1.000 635
WEST		240 0 1	wz	0.850		E 490 1.850 576		1.00 0.00 0.00
LANE VOLUME WORKSHEET EAST BOUND	LEFT TURN MOVEMENT	1. LT volume 2. Opposing mainline volume 3. Number of exclusive LT lanes Cross Product [2] * [1]	<pre>Left Lane Configuration (E-Excl, 3-Shrd): Left Turn Treatment Type:</pre>	4. LT adjustment factor 5. LT lane vol	RIGHT TURN MOVEMENT	Right Lane Configuration (E=Excl, S=Shrd) 6. RT volume 7. Exclusive lanes 8. RT adjustment factor 9. Exclusive RT lane volume 10. Shared lane vol	THROUGH MOVEMENT	11. Thru volume 12. Parking adjustment factor 13. No. of thru lanes including shared 14. Total approach volume 15. Prop. of left turns in lane group 16. Left turn equivalence 17. LT adj. factor: 18. Through lane volume 19. Critical lane volume

CONTRACTOR CONTRACTOR

Turn Check (if [16] > 3.5)
Permitted left turn sneaker capacity: 7200/Cmax

09

A STATE OF PERSONS ASSESSED.

SIGNAL OFERATIONS WORKSHEET

Phase Plan Selection from Lane Volume Worksheet	Lane Volume	Workshee		EAST	WEST	NORTH	SOUTH
Critical through-RT vol: [19] LT lane vol: [5] Left turn protection: (P/U/N) Dominant left turn: (Indicate	[19] U/N) cate by '<')				576 282 N	635 0 U	315 440 P
Selection Criteria based on the specified left turn protection < Indicates the dominant left turn for each opposing pair	on the ection left turn	Plan Plan Plan Plan Plan	n 1: U n 2a: U n 2b: P n 3a: <p n 3b: P</p 				n a n a a z
Phase plan selected (1 to 4)	4)			1		2a	
Min. cycle (Cmin) 60	Max.	Max. cycle (Cmax) 120	Cmax)	120			
Timing Plan	Value	Ph 1 P	EAST-WEST Ph 2	Ph 3	NOF Ph 1	NORTH-SOUTH	H Ph 3
Movement codes Critical phase vol [CV] Critical sum [CS] CBD adjustment [CBD]	1651	EWT 576 0		0	STL 440	NST 635	0
Reference sum [RS] Lost time/phase [PL] Lost time/cycle [TL]	1539	0		0	4	ঘ	0
Cycle length [CYC] Phase time Critical v/c Ratio [Xcm] Status	120.0 41 1.19 Over capacity	۲.	0.0	0.0	32.8	45.5	0.0
		,					

*	*1	***	****	****	***	***	****	• • • •	***	***	****	***	****	••	**	**	**	***	**	**	•••	***	***	***	•••	***	**
*																											*
٠		13	12:07						F	EGE	MBUSE	(/BE	ULAH	C	HU	RC	н									31	*
٠																											
*	*1	***	****	****	***	* * *	****		***				****	••	•••	**	**		**			***	***	***			**
*																	*										*
٠	1	8	(m)		8.5	50	8	.50	8	.50							*	TIME	E 2	ER.	IOD	,	má	in		90	
٠	- 1	31	(m)	1	10.0	00	10	.00	1.0	.00							*	TIME	8 8	LIC	Œ		má	in		15	
	1	7	(m)		6.6	50	6	.60	3	.30							٠	RESU	πл	's I	PER	IOD	mi	in	15	75	
*	1	tad.	(m)	- 2	20.0	00	20	.00	20	.00							*	TIME	3 0	080	Г		8/1	NE.	15	.00	*
*	- 1	PHI	(d)	2	30.0	00	30	.00	30	.00							*	FLO	()	ER	IOD		má	in	15	75	
٠	1	AIC	(m)		50.0	00	50	.00	50	.00							*	FLO	(T	YP	В	pcu	/w	ah	,	VEH	
٠		BRA.	D SEP			0		0		0							٠	FLO	(E	EAJ						AM	
*																	٠										*
*	*	***	****	***	***		****		***	***	****	***	****	**	**	**	**	****	***	**1	***	***	***	***	***		**
٠	1	EG	NAME	*P(cu .	FI	BWOL	(1s	t e	xit	2nd	etc	U) *	FL	OF	*C	L*	FL	OW	RA	TIO)	* P	MOL	TIN	E*
٠				*	,	٠											٠										*
*	80	our:	HBOUN	D*1.	.05	٠	560	40	0	0					1.	00	*5	0 * 0 .	75	1	.12	5 0	- 75	5*15	5 43	5 75	*
٠	N	ORT	HBOUN	D*1	.054	٠	290	64	0	0								0 * 0									
٠	W	SST	BOUND	*1.	.05	٠	520	39	0	0					1.	00	*5	0 * 0	75	1	.12	5 0	. 7!	5+15	5 4	5 75	
*				*		٠											•							*			*
*						٠								*			*	*						*			
٠						٠								*			*	*									
٠					,	٠											*										
٠	*	***	****	***	***	***	****		***	***		***	****	٠.	•••	**	**		***	**		***	***	***	***	****	**
*																					*						
*	1	7L0	W		vel	h		960		930	5	10									*						
*		CAP	ACITY		vel	h.	15	960	1	952	1.1	.39										AVD	EL	8		8.8	
٠	- 2	\VE	DELA	Y r	ains	s	0.	.06	0	.06	0.	.33									٠	L	0	s			. *
٠	1	4AX	DELA	Y r	ains	9	0	.08	0	.08	0.	60									*	VEB	Н	RS		6.9	*
*	7	WE	QUEU	E	vel	h.		1		1		5									*	COS	T	\$	1	02.9	
*	1	4AX	QUEU	E	vel	h.		1		1		8									*						
*																					*						

		****			****		****	****	***	*****	***	***	***	***	***							**
*																						*
*	13:	2:07					FEG	INBUS	H/BE	SULAH	CHU	TRCH	Ŧ								32	*
٠																						
•	****	****	*****	***	****	***	*****	****	****	*****	***	***		***						***	***	**
*																						*
*	E	(m)	8.	50	8.	.50	8.5)					7	IME	PE	RIO	D	mi	in		90	
٠	L.	(m)	10.	.00	10.	.00	10.0)					T	IME	SL	ICE		mi	in		1.5	
٠	٧	(m)	6.	60	6.	.60	3.3)					B	ESU	LTS	PE	RIO	D mi	in	15	75	*
٠	RAD	(m)	20.	.00	20.	.00	20.0)					T	IME	CO	ST		\$/h	ır	15.	0.0	*
٠	PHI	(d)	30.	.00	30.	.00	30.0)					E	LOW	PE	RIO	D	mi	n	15	75	*
*	DIA	(m)	50.	.00	50.	.00	50.0)					F	LOW	TY	PE	per	u/ve	ah	V	EН	
٠	GRAD	SEP		0		0)					F	LOW	PE	AK .	am/e	op/g	OTT.		PM	
٠																						*
*	****	****	*****	***	****	***	*****	****	****	*****	***	***	•••	***	•••	•••	***	••••	***	***	***	**
*	LEG	NAME	*PCU		LOWS	(18	t exi	2nd	eto	:t)	*FL	OF*	CL		FLO	W R	ATI(0	*FL	OW '	TIM	Eέ
٠			•	٠							*	*		*					*			•
			0*1.0		630	81)											*15			٠
			0*1.09		540	64)				-		-					*15		-	*
*1	WESTE	OUND	*1.05		490	24	10)			*1.	00*	50	*0.	75	1.1	25 (0.79	*15	45	75	*
٠			•	•							*		-	*					*			•
٠			•	*							*	*	,	*					•			٠
٠			*	*							*	•		*					*			*
*			*	*							•	•		•					*			*
•				• • •	••••		*****	****	****	*****	***	***	**	***	***	***	***	****	***	***	***	••
:																*						•
	PLOW		ve			140	118		730							•						*
	CAPA		ve			70	165		139							*		DEL			7.6	
	AVE				0.		0.1		.15	_						*	L		s		-	•
	MAX				0	.15	0.2		.24							*		н нь			7.1	•
	AVE					2		3	2								CO	ST	ş	1.0	6.3	*
1	MAX	QUEUS	S Ve	e.m		3		•	3							*						*
Ξ.																						
-														A 5 8		***	A 4 8 1					

5% trucks?